
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

HARDWARE INTEGRATION OF PARACHUTE
GUIDANCE, NAVIGATION, AND CONTROL FOR THE

AFFORDABLE GUIDED AIRDROP SYSTEM (AGAS)

James G. Johnson

September 2001

 Thesis Advisors: Isaac I. Kaminer
 Oleg A. Yakimenko

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Title (Mix case letters)
Hardware Integration of Parachute Guidance, Navigation, and Control for the
Affordable Guided Airdrop System (AGAS)

6. AUTHOR(S) Johnson, James Gilbert

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

 This study is a continuation of a previous work concerning the Affordable Guided Airdrop System (AGAS), a
parachute structure that integrates low-cost guidance and control into fielded cargo air delivery systems. This
thesis sought to integrate the previous studies and algorithms into developmental prototypes for test and evaluation
(DT&E). Several objectives and tasks were completed in the course of this research and development. A
RealSim® executable on an Integrated Systems, Incorporated (ISI) AC-104 real-time controller integrated actual
Vertigo®, pneumatic muscle actuators (PMAs) into the MATRIX-X environment simulation model used in the
previous work to validate, analyze and improve the simulation model. A ground station utilizing the model’s
control algorithms, a downlink of platform position and attitude data, and a Futaba® Pulse Code Modulated uplink
demonstrated controlled guidance of a round cargo parachute (G-12). This system evolved as an RS-232 serial
control RF modem uplink replaced the PCM signal. After evaluating, validating, and improving the algorithms
from ground station control the model was written in C-code for incorporation into an autonomous system. The
results from the drops were then analyzed again in the MATRIX_X® model to improve the model and further
qualitatively evaluate optional control strategies. Conclusions and recommendations for further study were drawn
from this project.

14. SUBJECT TERMS
RealSim® software, Parachute, GNC, Guidance, Navigation, Control, Modeling, Hardware
integration, Autocoding

15. NUMBER OF
PAGES ###

 16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This study is a continuation of a previous work concerning the Affordable Guided

Airdrop System (AGAS), a parachute structure that integrates low-cost guidance and

control into fielded cargo air delivery systems. This thesis sought to integrate the

previous studies and algorithms into developmental prototypes for test and evaluation

(DT&E). Several objectives and tasks were completed in the course of this research and

development. A RealSim® executable on an Integrated Systems, Incorporated (ISI) AC-

104 real-time controller integrated actual Vertigo®, pneumatic muscle actuators (PMAs)

into the MATRIX-X environment simulation model used in the previous work to

validate, analyze and improve the simulation model. A ground station utilizing the

model’s control algorithms, a downlink of platform position and attitude data, and a

Futaba® Pulse Code Modulated uplink demonstrated controlled guidance of a round

cargo parachute (G-12). This system evolved as an RS-232 serial control RF modem

uplink replaced the PCM control. After evaluating, validating, and improving the

algorithms using the ground station control algorithm was written in C-code for

incorporation into an autonomous system. The results from the drops were then analyzed

in the MATRIX_X® to further improve the model and qualitatively evaluate improved

control strategies. Conclusions and recommendations for further study were drawn from

this project.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. MISSION NEED ..1

1. Joint Vision 2010..1
2. New World Vista ..2
3. Point-of-Use Delivery..2

B. THE AFFORDABLE GUIDED AIRDROP SYSTEM3
1. Background ..3
2. Initial G-12 AGAS System ..6

II. HARDWARE IN THE LOOP ..9
A. OVERVIEW OF OPTIMAL GNC MODEL ..9

1. Basics of the Model ..9
2. Application of Pontryagin’s Maximum Principle of Optimality...12
3. Control Strategy...16

B. HIGHLIGHTS OF NPS RAPID FLIGHT TEST PROTOTYPING
SYSTEM (RFTPS)...19

C. INTEGRATION OF HARDWARE...22
D. APPLYING CONNECTIONS TO AGAS MODEL...................................27
E. COMPLETE SET-UP FOR HITL...30
F. COMPARISON OF ACTUAL FILL TIMES WITH MODEL FILL

TIMES...31
G CORRECTION TO MODEL TO EMULATE ACTUAL PMA

PERFORMANCE..32

III. FLIGHT TEST USING GROUND STATION ...37
A. COMPONENTS...37
B. AGAS SERIAL DATA INPUT...40

1. Serial Data ..40
2. Reading the Serial Data...40

C. PWM CONTROLLER..44
1. The “Controller”..44
2. Control analysis of PCM system...45

D. SERIAL CONTROLLER ...48
E. AUTONOMOUS CONTROLLER...58

1. Control Analysis of Autonomous System.61

IV. ASSIMILATE DT&E DATA BACK INTO THE MODEL67
A. POINT MASS COMPUTED AIR TRAJECTORY AND CARP

VERIFICATION..67
B. MODEL PERFORMANCE CHANGES TO EMULATE ACTUAL

DROP PERFORMANCE..68
1. Logic Changes Incorporated During DT&E...................................68
2. Logic Changes required due to observations during DT&E70

 viii

a. Heading ...70
b. Drive Force..70

3. Results of Simulation Improvements ...71
C. SUGGESTED CONTROL ALGORITHM IMPROVEMENTS74

1. Incorporation of Hysteresis...74
2. Rate of Displacement from Trajectory ..75
3. Multiple simulation runs ...77

V. CONCLUSIONS AND RECOMMENDATIONS...81
A. CONCLUSIONS ..81
A. RECOMMENDATIONS...82

APPENDIX A INCORPORATION OF HARDWARE IN THE LOOP................83
A. AGAS CONCEPT AND COMPONENTS ..83

1. Concept ...83
2. The components ...83

a. The Parachute ...83
b. The Pneumatic Muscle Actuators (PMAs)84
c. The Inert Gas supply system...84
d. Valve control ...86

B. HARDWARE IN THE LOOP (HITL) VERSION ZERO (HITLV0)88
1. Concept ...88
2. The Hardware for HITLv0 ...90

a. The Transmitter/ Receiver link...90
b. The signal feedback link ...95
c. The pressure sensing link ...96
d. The AC-104 ...98

3. The Model for HITLv0..100
4. RealSim® for HITLv0..102
5. The Interactive Animation (IA)..103
6. Making the connections...104
7. The execution..105

C. HITL VERSION ONE (HITLv1) ...106
1. The model ...106
2. Incorporating the Inputs ...109

a. Model requirements for Real Time operation......................109
b. Connecting the inputs to the Model110

3. Integrating the Outputs...112
4. The Interactive Animation ..113
5. Program Execution ..113

D. HITL VERSION TWO (HITLV2). ..114
1. Modifications ..114

a. Programming and Coding ..114
b. Display and Connections ..117

2. Hardware Set-up..118
3. Program Execution and Data collection ..120

E. HITL VERSION 4 (HITLV4)...121

 ix

1. The Problem ...121
2. The Fix ..123
3. The results...125

F. INCORPORATING MODEL IN GROUND COMPONENT FOR
CONTROL SYSTEM VERIFICATION...128
1. Concept and Overview ..129
2. Communications ..130

a. Uplink ..130
b. Downlink ...130

3. SerCom..131
4. p0 controller ...132
5. The Remaining Blocks in PITLv0 ..133

a. HITLv0 ..133
b. PMA_Cmd2VOLT...133
c. Logic Switch 15 ...133
d. “Passthrough” Gain Blocks ...133

APPENDIX B AGAS CONTROL SYSTEM VALIDATION PHASE AIR-
GROUND/GROUND-AIR ICD..135

APPENDIX C USER_SER.C (VER 17) ..139

APPENDIX D AGAS_GNC.H AND AGAS_GNC.C (VER 3)..............................153

APPENDIX E DRAPER TO AGAS INTERFACE CONTROL DOCUMENT
(ICD)REVISION 3A, 22 JUNE 2001 ...165

LIST OF REFERENCES..167

INITIAL DISTRIBUTION LIST ...169

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1.1 Joint Vision 2010 ...1
Figure 1.2 AGAS Mission Profile courtesy Vertigo® ...3
Figure 1.3 C-9 Parachute Pneumatic Muscles and system..6
Figure 1.4 On the Left-PMAs 1 and 4 filled lifting 50 lb weights and PMA2 actuated.

On the right- PMAs connected to the AGAS box..7
Figure 1.5 Futaba® manual controller settings ..8
Figure 2.1 Top SuperBlock of AGAS Matrix-X® Model ...9
Figure 2.2 Controller SuperBlock ...10
Figure 2.3 Vehicle Model SuperBlock..11
Figure 2.4 Projection of the optimization task onto the horizontal plane13
Figure 2.5 Time-optimal control ...15
Figure 2.6 Example of the time-optimal trajectory and time-optimal controls.................15
Figure 2.7 Generalized case of optimal control ..15
Figure 2.8 Influence of operating angle ..16
Figure 2.9 Control concept..17
Figure 2.10 Control activation...18
Figure 2.11 Example of control histories ..18
Figure 2.12 RFTPS Hardware ...20
Figure 2.13 RealSim Graphical User Interface ...21
Figure 2.14 HITLv0 Overview..22
Figure 2.15 The conFigured AC-104 ..24
Figure 2.16 Top Level SuperBlock for Calibration ..25
Figure 2.17 PMA voltage to pressure (PMA_VtoPSI) SuperBlock....................................26
Figure 2.18 Interactive Animation GUI for HITLv0 ..26
Figure 2.19 Partial expanded view of the HITL simulation..28
Figure 2.20 Functional diagram of the HITL simulation ..30
Figure 2.21. Complete HITL setup ..31
Figure 2.22 PMA pressure simulated (red) and PMA pressure HITL (blue) vs. time.32
Figure 2.23 PMA model for HITL w/ block 12 highlighted ...33
Figure 2.24 PMA Length Change vs. Pressure ...33
Figure 2.25 Linearized PMA model..34
Figure 2.26 Fill time response for PMAs 2 and 4 ...35
Figure 2.27 Comparison of the modeled and actual PMA responses35
Figure 3.1 Flight test setup ..37
Figure 3.2 AGAS control station...38
Figure 3.3 The AGAS package rigged for deployment...38
Figure 3.4 Overview of top-level SuperBlock for PITL ...39
Figure 3.5 SerData SuperBlock...41
Figure 3.6 LTP coordinates SuperBlock ...42
Figure 3.7 Controller SuperBlock ...44
Figure 3.8 15 March 2001 Control Data ...46

 xii

Figure 3.9 09 May 2001 Control Data ..46
Figure 3.10 08 May 2001 Trajectory Data ..47
Figure 3.11 08 May 2001 Heading Data ...48
Figure 3.12 Serial Control Model..48
Figure 3.13 Serial/Autonomous AGAS package rigged for deployment............................50
Figure 3.14 Serial/Autonomous AGAS package open and top views50
Figure 3.15 26 June 2001 Trajectory Data ..52
Figure 3.16 26 June 2001 Control Data ..53
Figure 3.17 26 June 2001 Heading Data ...53
Figure 3.18 26 July 2001 Trajectory Data...54
Figure 3.19 26 July 2001 “God’s Eye” Trajectory Data ...55
Figure 3.20 26 July 2001 Control Data ...56
Figure 3.21 26 July 2001 Radial Error with Wind Data ...57
Figure 3.22 Model for autonomous control C-code. ...58
Figure 3.23 new Controller SuperBlock for autonomous code generation.........................59
Figure 3.24 Flow chart for autonomous guidance code ..60
Figure 3.25 06 Aug 2001 Radial Error..62
Figure 3.26 06 Aug 2001 Command Data ..62
Figure 3.27 14 Aug 2001 Radial Error Data ...63
Figure 3.28 30 Aug 2001 Trajectory Data ..64
Figure 3.29 30 Aug 2001 Radial Error Data ...64
Figure 4.1 Comparison of CARP/CAT to Trajectory Data...67
Figure 4.2 Tolerance Cone used in Original model ..69
Figure 4.3 26 June 2001 drop data ..69
Figure 4.4 27 July 2001 drop data...72
Figure 4.5 Simulation on Original algorithm with 27 July 2001 winds............................72
Figure 4.6 Simulation on Corrected algorithm with 27 July 2001 winds72
Figure 4.7 Comparison of Control Actuations ..73
Figure 4.8 Hysteresis concept as applies to PMA 1 ..74
Figure 4.9 Corrected controls (Blue) vs. Corrected w/ 10° Hys. (Red)75
Figure 4.10 State diagram of tolerance logic incorporating D(RadErr)/dt..........................76
Figure 4.11 Corrected model w/ 10° Hys. and D(RadErr)/dt..77
Figure A.1 PMAs for 28 ft. C-9 parachute...84
Figure A.2 Inert gas supply and plumbing...85
Figure A.3 AGAS Box ...86
Figure A.4 Futaba® receiver mapping in AGAS box...86
Figure A.5 Futaba® manual controller settings ..88
Figure A.6 HITLv0 Overview..90
Figure A.7 Futaba Receiver diagram w/ pulse width sensors ..91
Figure A.8 Master (left) and Slave (right) w/ gray DB-9 cable in side of slave and

black Trainer cable...93
Figure A.9 Master Futaba Controls..94
Figure A.10 Pin-out of monitoring Futaba receiver...95
Figure A.11 Futaba monitoring receiver ..96

 xiii

Figure A.12 Pressure transducers through 300 ohm current to voltage board. Inset is
the current to voltage board connected to the AC-10497

Figure A.13 Transducer Current and Sensed Voltage vs. Pressure97
Figure A.14 Front Panel of AC-104 controller ..99
Figure A.15 The AC-104 conFigured for HITLv0; P1 is receiving pressure voltages, P3

is receiving Pulse width signals, and P8 is sending corresponding voltage
commands to the slave Futaba. ..99

Figure A.16 Top Level SuperBlock for HITLv0 ...100
Figure A.17 PMA voltage to pressure (PMA_VtoPSI) SuperBlock..................................101
Figure A.18 RealSim® GUI..102
Figure A.19 Interactive Animation GUI for HITLv0 ..104
Figure A.20 Hardware Connection Editor for Inputs...105
Figure A.21 Hardware Connection Editor for Outputs ..105
Figure A.22 SuperBlock for HITLv1...106
Figure A.23 Trajectory Seek guidance Strategy. ...107
Figure A.24 Trajectory Seek Release points and Landing points108
Figure A.25 Expanded Plot of Trajectory Seek ...108
Figure A.26 Control Strategy Trade Study ..109
Figure A.27 Catalog of SuperBlocks within HITLv1 ..110
Figure A.28 Component change in PMA Model SuperBlock from continuous model to

Real time discrete requirement. ...110
Figure A.29 Partial expanded view of Vehicle model ...111
Figure A.30 IA screen for HITLv1 ..113
Figure A.31 SuperBlocks in the CARP model...114
Figure A.32 Catalog of SuperBlocks for HITLv2..115
Figure A.33 HITLv2 IA ...118
Figure A.34 On the Left-PMAs 1 and 4 filled lifting 50 lb weights and PMA2 actuated.

PMA3 is missing and line is capped off; On the right- PMAs connected
to the AGAS box..118

Figure A.35 AGAS testing of the Hardware for control verification.................................119
Figure A.36 PMA pressure simulated (red) and PMA pressure HITL (blue) vs. time.121
Figure A.37 PMA model for HITLv2 w/ block 12 highlighted ...122
Figure A.38 PMA Length Change vs. Pressure ...123
Figure A.39 v4 Linearized PMA model...124
Figure A.40 Fill time response for PMAs 2 and 4 before and after fill time limiter.125
Figure A.41 Detailed fill time response of the first fill of PMA 2.....................................126
Figure A.42 Fill response and miss distance after integrating fill time limiter..................127
Figure A.43 Overview of top SuperBlock for PITLv0 ..128
Figure A.44 AGAS control station and the AGAS package rigged for deployment130
Figure A.45 “sercom” SuperBlock...131
Figure A.46 “LTP_coordinates” SuperBlock...132
Figure A.47 “p0 controller” superblock...133

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

LIST OF TABLES

Table 1.1. C-9 and G-12 parameter comparisons. ..6
Table 4.1 Run table of logic alternatives ...78
Table A.1 Parachute Data ...83
Table A.2 Pin-out for link from Ruby-D/A to “Slave” Futaba...92

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

ACKNOWLEDGMENTS

I would like to thank many people without whom this project would not have

been completed. First to Scott Dellicker, the pioneer of this concept, and the efforts of

ENS Tim Williams and LT Chaz Hewgley for incorporating the concept into the Xmath

environment. It is because of their many hours in front of computer monitors that I got to

throw things out of airplanes. Of course everyone at Yuma Proving Grounds and the

U.S. Army Soldier and Biological Chemical Command who provided an abundance of

information, time, and financial support.

To Professor Isaac Kaminer for letting me run with some of my wild ideas, and

Professor Oleg Yakimenko for sharing time with me to develop the tools I needed.

Particular thanks to Jim Bybee of Cibola information systems for providing me with

invaluable insight into the world of GPS hardware and guidance systems.

Honey…, I’ll thank you later.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. MISSION NEED

1. Joint Vision 2010
Joint Vision 2010 [Ref 1] seeks to achieve dominance across the full range of

military operations through the application of new operational concepts. The four

operational concepts involved in achieving dominance are: Dominant Maneuver,

Precision Engagement, Full Dimensional Protection, and Focused Logistics. The first

three concepts rely on our ability “…to project power with the most capable forces, at the

decisive time and place.” To optimize this, logistics must be “… responsive, flexible,

and precise.” Focused logistics will deliver tailored logistic packages and sustainment

directly at all levels of operations, strategic, operational, and tactical. This concept

enables future joint operations to be more “…mobile, versatile and projectable.”

Figure 1.1 Joint Vision 2010

2

2. New World Vista
The Secretary of the Air Force, and Chief of Staff directed the Air Force

Scientific Advisory Board to identify those technologies that will guarantee the air and

space superiority of the United States in the 21st century. These efforts culminated in the

1997 report [Ref 2], “New World Vistas, Air and Space Power for the 21st Century.” The

report recognized that reduced OODA loop cycle time (observe, orient, decide, act,

observe,…) is a true force multiplier. It is characteristic of reduced cycle time that all

components of the Force must operate at a higher tempo. If an air-lifter is tardy with

supplies, orientation of forces is delayed, an attack mission will be late, and the

choreography of an entire operation can be disrupted. To this end, Point of use delivery

is a chosen solution. Large air-lifters with point of use delivery capability can provide

the military equivalent of "just in time" supply from CONUS, if necessary, with cost

reductions and efficiency increases that are as large as those realized by commercial

industries.

3. Point-of-Use Delivery
An item shipped by military airlift from one point to another will usually spend

more time on the ground than in the air during the shipping process. The purpose of

point-of-use delivery is to reverse the ratio of cargo ground time to cargo airtime. If

cargo can be delivered directly to the user, approach and landing delays and airport

bottlenecks will be eliminated, and all weather operation will be possible. Delivery rate

further increases by decreasing logistic support requirements. Many of the K-loaders that

unload the aircraft, the trucks that carry cargo from airport to user, warehouses that store

cargo waiting for user pickup, and some airports will not be needed. The amount of

airlift required for support equipment will be reduced and afford additional space to

operational cargo. Additionally, land transport through enemy territory will be avoided.

Point-of-use delivery includes precision airdrop. The goal: Deliver cargo

accurately without landing the aircraft from altitudes up to at least 20,000 feet. Aircraft

must be protected against SAMs and ground fire in both: Military Operations other than

War in areas of local conflict by means other than offensive attack; and in wartime

3

missions to support operations in unsecured forward areas where offensive attack can not

adequately protect slow, large, low altitude air-lifters. 20,000 foot release altitude affords

increased survivability of the delivery platform and decreases the cycle time by

eliminating descents and climbs from transit and drop altitudes.

B. THE AFFORDABLE GUIDED AIRDROP SYSTEM

1. Background
Large-scale Parafoil systems currently exist and ensure 99% landing

accuracy in a hundred-yard circle when guided by a beacon. They provide the accuracy

required with delivery from a high altitude platform and standoff from potential ground

based anti-air threats. The drawback is prohibitive cost for each pound of payload

delivered.

A combination of the methods where the Parafoil is replaced with
a much lower cost system may be effective and affordable. Standard, non-
steerable parachutes exhibit forward motion at a few knots. If wind
measurements can be made, the forward or "drive" velocity will be
adequate to compensate for wind measurement errors. The system can be
steered by a GPS controlled steering system on the load.[Ref 2]

Figure 1.2 AGAS Mission Profile courtesy Vertigo®

4

The team consisting of the US Army, US Air Force, Cibola Information

Systems, Vertigo Inc., Draper Labs, Planning Systems Inc., and the Naval Postgraduate

School is evaluating improved Affordable Airdrop Technologies. These efforts include

the design and development of the Affordable Guided Airdrop System (AGAS), which

incorporates a low-cost guidance, navigation, control and actuation system into fielded

cargo air delivery systems.

The current design concept includes implementation of commercial Global

Positioning System (GPS) receiver and a heading reference as the navigation sensors, a

guidance computer to execute the code that determines the desired control command, and

the application of Pneumatic Muscle Actuators (PMAs) to effect the control. The

navigation system and guidance computer will be secured to existing container delivery

system while the PMAs will be attached to each of four parachute risers and to four

points on the container. Control is affected by lengthening a single or two adjacent

actuators. The parachute deforms creating an unsymmetrical shape, essentially shifting

the center of pressure, and providing a drive or slip condition. Upon deployment of the

system from the aircraft, the guidance computer would steer the system along a pre-

planned trajectory. This pre-planned trajectory will be generated from wind data

collected from a Global Positioning System (GPS) Dropsonde, such as the WindPak

currently in use at the Yuma Proving Grounds (YPG) [Ref 3], from the delivery aircraft.

The wind data is relayed real-time to the delivery aircraft which then processes it to

generate the desired Computed Air Release Point (CARP) for each deliverable package

and loads the appropriate desired trajectory into each package for tracking. Ideally the

approximate 10 minute time-late wind data is non-variable and the release on the CARP

and calculation for initial throw are dead accurate then the package should glide to the

Drop Zone (DZ) along the pre-computed trajectory. However, anyone who has flown

aircraft, sailed boats, or even hit a golf ball knows, the wind is not constant. Pilots in

large aircraft, of which I’m one, cannot always set up to hit the precise point in space at

the precise airspeed, on the given heading. Sometimes flight paths need to be adjusted

for things such as mountains or air defense zones.

5

The AGAS concept relies on the sufficient control authority to overcome

errors in the wind estimation and point of release. We also intend to achieve limited

capability, with sufficient altitude, to deploy two packages from a single release point and

have them navigate to separate trajectories and DZs. This would further improve

delivery cycle time by reducing the number of passes required.

A great deal of work on the development of AGAS has been done to date.

Mr. Scott Dellicker initiated the Naval Postgraduate School (NPS) efforts with AGAS

and summarized his accomplishments in his thesis “Low Cost Parachute Guidance,

Navigation, and Control” [Ref 4]. Flight test data demonstrated the Vertigo Inc, actuator

system (Figure 1.3) for a C-9 parachute provided glide ratios up to 0.5. Mr. Dellicker

incorporated this data into the algorithms he developed and integrated them into a

Matlab® model to simulate the response of a C-9 parachute for varying wind profiles.

600 simulations with random initialization parameters showed strong potential of

providing a low cost alternative for precision airdrop.

Follow on efforts to Mr. Dellicker’s were conducted by Ensign (ENS) Tim

Williams and summarized in Ref 5. ENS Williams’ study converted the computer model

of the C-9 parachute’s dynamics, sensor package, and control system completed by Scott

Dellicker on MathWorks MATLAB/SIMULINK to Integrated Systems, Inc’s (ISI)

MATRIX_X/XMATH/SystemBuild. This was done in anticipation of using ISI’s

RealSim® autocode for implementation on the compatible ISI/WindRiver AC-104 real-

time controller. He also altered the model parameters from that for a C-9 parachute to

best reflect the simplistic model of the G-12 parachute dynamics. Table 1.1 illustrates the

differences between the to canopies. Actuators were also modeled, tested, and verified

on the computer. Simulation results found that the wind estimation process is crucial to

the entire control scheme. With poor wind prediction, errors in the control can be great.

6

Figure 1.3 C-9 Parachute Pneumatic Muscles and system

Parameter C-9 G-12

0d (ft) {nominal (flat) diameter} 28 64

0/ dd P {Ratio of inflated diameter to nominal diameter} 0.67 0.67

Number of suspension lines 28 64

00 / dl {suspension line length/nominal diameter} 0.82 0.80

0DC { drag coefficient} 0.68 0.73

Parachute weight (lbs.) 11.3 130
Payload weight (lbs.) 200 2,200
Rate of descent (fps) nominal 20 28

Table 1.1. C-9 and G-12 parameter comparisons.

2. Initial G-12 AGAS System

Vertigo, Incorporated developed PMAs to provide the AGAS control. With four

independently controlled actuators, two of which can be activated simultaneously, the

parachute can be steered in eight different directions. The concept employed for the

AGAS is to fully pressurize all actuators upon successful deployment of the parachute.

To affect control of the system, one or two actuators are depressurized. This action

“deforms” the parachute creating drive in the opposite direction to that of control action.

The C-9 PMAs change approx 3 feet in length from un-pressurized to pressurized.

The PMAs for the G-12 parachute (Figure 1.4) are 24 ft in length and contract approx.

5.5 feet (dependant on fill pressure) when individually supporting a 500 lb load.

7

Figure 1.4 On the Left-PMAs 1 and 4 filled lifting 50 lb weights and PMA2 actuated.

On the right- PMAs connected to the AGAS box.

The gas for filling the actuators comes from a 4500-psi reservoir. Each of the

four actuators is then connected to this same reservoir of inert gas through plumbing that

allows for venting (actuating) and filling as commanded. On the pressure line with the

pressure switch is a separate pressure transducer, that generates a current proportional to

the pressure sensed and can provide feedback as to the state of the PMA.

For initial developmental tests Vertigo controlled PMA states through Futaba®

RC command signals. The Futaba® receiver onboard converts the PCM signal to a PWM

command that is then passed to an Optically Isolated Electronic switch with a preset

pulse width threshold. When the command signal exceeds the threshold, the switch

initiates the relay logic to actuate (vent) the PMA. The transmitter is set up such that the

right Joystick controlling J1 (normally aileron) and J2 (normally elevator) control PMAs

1-4. This control scheme allows two PMAs to vent (actuate) with a single control action.

To vent PMA 1, move the joystick to the 12 o’clock position. To vent PMA 2 move the

joystick to the 3 o’clock position. To vent PMA 1 and 2 move the joystick to the 1:30

position. This setup also prevents the operator from accidentally actuating two opposite

PMAs such as 1 and 3.

8

Figure 1.5 Futaba® manual controller settings

With the Futaba® transmitting through a linear amplifier the deployed AGAS

platform can be controlled by personnel on the ground. Optical and Radar ground

tracking as well as onboard sensors provided data of effects from PMA actuation.

A more detailed description of the aforementioned system is annotated in the

technical notes in Appendix A.

This thesis describes the continued efforts to incorporate GNC algorithms into an

autonomous package to support Developmental Test and Evaluation (DT&E) of AGAS.

PMA1
Chan 2

PMA2
Chan 1

PMA3
Chan 7

PMA4
Chan6

On-Off
Chan 5

9

II. HARDWARE IN THE LOOP

This chapter reviews ENS Williams model, particularly the inputs and outputs and

analyze his Optimal Control algorithms. ENS Williams developed his algoritms on a

Matrix-X® based platform in anticipation of using ISI’s integrated real-time controller to

assimilate hardware interfaces for developmental testing. This effort incorporates his

algorithms for simulations using the NPS Rapid Flight Test Prototyping System utilizing

Matrix-X/Xmath/Systembuid/RealSim® functionality. First developed is a simple model

to interface with the AGAS package in order to validate and calibrate the integration of

hardware with the real-time controller’s I/O is developed. Then the model is modified to

interact with the hardware and compare the model’s algorithm results to those obtained

with hardware-in-the-loop (HITL). Finally, appropriate corrections are made to the

algorithm to demonstrate that the model can emulate the HITL response. All these

procedures were accomplished in a laboratory environment and did not include actual

airdrop. Specific technical information on procedures and set up discussed in this chapter

are detailed in Appendix A.

A. OVERVIEW OF OPTIMAL GNC MODEL

1. Basics of the Model

pos_univ_x_ft
pos_univ_y_ft
pos_univ_z_ft
phi
theta
psi
u_fps
v_fps
w_fps
phi_dot
theta_dot
psi_dot
PMA1_pos_psi
PMA2_pos_psi
PMA3_pos_psi
PMA4_pos_psi
fill_time_sec
reservoir_pressure_psi

Continuous

SUPER

BLOCK

2
Vehicle Model

1PMA1_cmd_psi

2PMA2_cmd_psi

3PMA3_cmd_psi

4PMA4_cmd_psi

PMA1_cmd_psi

PMA2_cmd_psi

PMA3_cmd_psi

PMA4_cmd_psi

error X over norm X

error Y over norm Y

outercone

radial error

no_controls
0.1

SUPER

BLOCK

1
Controller

1sensor_pos_x

2sensor_pos_y

3sensor_pos_z

4phi

5theta

1sensor_heading

sensor_pos_x

sensor_pos_y

sensor_pos_z

SAofferr_x

SAofferr_y

SAofferr_z

jitter_x

jitter_y

jitter_z
Continuous

SUPER

BLOCK

22
Simple GPS

1pos_univ_x_ft

2pos_univ_y_ft

3pos_univ_z_ft

sensor_heading

sensor_error
Continuous

SUPER
BLOCK

12
Simple Heading Sensor

6psi

1
2
3
4
5
6
7
8
9
10
11
12
17
18
19
20
27
32

13

14

15

16

25

28

29

30

31

22

23

24

34

35

36

37

38

39

40

41

Figure 2.1 Top SuperBlock of AGAS Matrix-X® Model

10

Details of the Parachute GNC algorithm for AGAS can be found in Ref 5. The

following discussion will only highlight the conceptual design of the algorithm and

emphasize the portions to be changed. Figure 2.1 depicts the Top level of the model

which is broken down into four major sub-categories (SuperBlocks); Controller, Vehicle

Model, Simple GPS, and Simple Heading Sensor. “Controller” (Figure 2.2) implements

the control algorithms for the system based on heading of package and model position in

space relative to the desired position in space.

pos Y target

Linear

3
trajectory y
predicted

3 sensor_pos_z

position error x
21

sensor_pos_x

position error y
12

2 sensor_pos_y

 321y=T *u
13

Body Transform
Universal to

position error x
position error y

6 sensor_heading
5 theta
4

phi

radial errorY = (U1**2 + U2**2)**0.5
24

norm of input vector

1

2

error X over norm X

error Y over norm Y
Y1 = U1/U3
Y2 = U2/U3

251
2

actuate PMA 3Y = (U1>0.3 or U1<
 -0.3) and U2<0

161

1

actuate PMA 1Y = (U1>0.3 or U1<
 -0.3) and U2>0

151

1

actuate PMA 2Y = (U1>0.3 or U1<
 -0.3) and U2>0

42

2

actuate PMA 4Y = (U1>0.3 or U1<
 -0.3) and U2<0

142

2

pos X target

Linear

5
trajectory x
predicted

3 sensor_pos_z

STATE
DIAGRAM

1
Tolerance

outercone

inputs: u;
outputs: y;
float u, y;
if u>8000 then
 y=500;
elseif u>6000 then
 y=400;
elseif u>4000 then
 y=300;
elseif u>2000 then
 y=150;
else
 y=60;
endif;

33

Y = U1 and U2
27

Y = U1 and U2
17

Y = U1 and U2
18

Y = U1 and U2
26

PMA2_cmd_psiY = 175 -
 175*U

28

PMA4_cmd_psiY = 175 -
 175*U

38

PMA1_cmd_psiY = 175 -
 175*U

99

PMA3_cmd_psiY = 175 -
 175*U

98

-1
44

3 sensor_pos_z

no_controlsY = U1 + U2
 + U3 + U4

19
Actuations

Total Control

Write to
VARIABLE
which_Cf
>Global<

39

8

5

6

7

2

4

1

3

9

Figure 2.2 Controller SuperBlock

The “Controller” provides PMA commands, Actuate (vent) or Fill, to the

“Vehicle Model”. In the “Vehicle Model”(Figure 2.3) the four actuator commands are

processed by a block called “PMA model” which characterizes the dynamics of the

PMAs and defines their state.

“PMA model” outputs the states of the four PMAs (ranging from 0 psi for a fully

vented PMA to a maximum pressure for a fully filled PMA) to the remainder of the

SuperBlock that implements the simplified 3 Degree Of Freedom (3-DOF) equations of

motion. The equations and a brief description are provided below. This model is

described as 3-degree-of-freedom because only the x, y, and z positions of the parachute

are affected by control inputs. The angular positions Φ, Θ, and ψ (around the x, y, and z

axis, respectively), are not affected by control in this simplified model.

11

FxB_lb

FyB_lb

FzB_lb

MxB_ftlb

MyB_ftlb

MzB_ftlbContinuous

SUPER

BLOCK

1
Aerodynamics

1
2
3

1
2
3
4

6

effective_mass_x_slug
effective_mass_y_slug
effective_mass_z_slug
I11
I22
I33
I12
I13
I23
CGBX
CGBY
CGBZContinuous

SUPER

BLOCK

12
Properties

Mass

rho_slug_per_cu_ft

Atmospheric Pressure Pa
Atmospheric Density Kg per m3
Atmospheric Temperature Deg K
Atmospheric Speed of Sound m p s

Continuous

SUPER
BLOCK

11
Atmosphere 1962
ATM US Standard

0.00194
15

Customary
SI_to_US_

2

5
1

4
2

6
3

Read from
VARIABLE

vehicle_weight
>Global<

2
vehicle_weight

3

16
accelerations

body axis linear

1
2
3

u_fps

v_fps

w_fps

1

s
X0= %linear_velocity_init

7

3

Linear

8
direction
wind in x

Linear

9
direction
wind in y

Linear

18
direction
wind in z

 321
y=T *u
26

body transform
universal to

3
psi

2
theta

1phi

3

19
groundspeeds
body axis

1
2
3

1
23

airspeed_fps ALGEB
EXPR

14
true airspeed fps

1
2
3

ALGEB
EXPR

34
dynamic pressure lbf per sq ft

3 321y=T *u
 -1

99
transform

body to universal

1
2
33

2
1

pos_univ_x_ft
pos_univ_y_ft
pos_univ_z_ft

1
s

X0= %linear_position_init

98

3

-1
29

sign
change

3

0.3048
22

meters
feet_to_

3

17
accelerations

body axis angular

4
5
6

4
5
6

phi_dot

theta_dot

psi_dot

1
s

X0= %angular_velocity_init

97

3

phi

theta

psi

1
s

X0= %angular_position_init

27

3 Y = U<=0
96

STOP
95

PMA1_pos_psi
PMA2_pos_psi
PMA3_pos_psi
PMA4_pos_psi
fill_time_sec
reservoir_pressure_psiContinuous

SUPER

BLOCK

3
model
New PMA

1 PMA1_cmd_psi

2 PMA2_cmd_psi

3
PMA3_cmd_psi

4 PMA4_cmd_psi

-1
94

transform
z_coordinate

7

8

9

1
2
3

10

11

12

4

5

6

13
14
15
16
17
18

Figure 2.3 Vehicle Model SuperBlock

This equation in its most basic form is Fa
m

=
urr

. The equations of motion for this

very simplistic model are (in state-space form):

.
1

11 ,.

22 ,
.

33

0 0 0
0 0 0
0 0 0

control x
D

G control y
T

T G W

u m u F
qC SV v m v F
V

m w Ww

V V V

α
α

α

−

 +
 − = = + + +

 +

= +

&

3

11 23
4

4
1

= PD

πρα 1122 αα = 1133 2 αα ×= (2.1)

-
.
,u

.
v , and

.
w are linear accelerations in the x, y, and z directions in ft/s2;

- u, v, and w are the components of VG in ft/s;

- xxα is the apparent mass in slugs, m is the mass of parachute and payload in slugs;

- q is the dynamic pressure in lbf/ft2, CD
 is the coefficient of drag (dimensionless);

- S is the drag area of the parachute in ft2, VT is the magnitude of the true airspeed in ft/s;

- W is the weight of the payload and parachute in lbf;

- Fcontrol is the force effect of the control actuators in lbf (in only the x and y directions).

12

- DP is the profile diameter of the parachute equal to 2/3 of the reference diameter of the

flat circular parachute.

Equation 2.1 Point Mass equation of motion

The “Simple GPS Model” and the “Simple Heading Model” provide reference

data to the controller based on vehicle model actions. These are covered in detail in Refs

4 and 5.

The “Controller” and “Vehicle model” Operations are the SuperBlocks we will be

receiving commands from and providing input to as we incorporate the actual PMAs into

the model in the laboratory environment. In particular we are replacing the “ New PMA

Model” block with actual PMAs.

2. Application of Pontryagin’s Maximum Principle of Optimality
In discussion of the current model we need to be familiar with the basis for

control activation and the supporting research behind it.

The control forces are calculated based on the pressure of the four actuators and

the assumption (based on flight test data) that one control input at a time causes a 0.4

glide ratio and two control inputs at a time causes a 0.2 glide ratio. This control force is

then used in the calculation of the linear accelerations of the parachute by Eqn.2.1, along

with other parachute properties such as its mass, size, and weight, and the dynamic

pressure of the atmosphere which is dependent on altitude. Linear acceleration is

integrated to give airspeeds. Groundspeed is integrated to give true positions in x, y, and z

coordinates of the parachute. The parachute also has a constant yaw rate (103.0 −= sψ&) with

small perturbations from this constant, and zero pitch and roll rates. These angular rates

are integrated to give the Euler angles of the parachute, which are used to transform the

coordinate axes of the parachute from the body to inertial coordinates or vice versa.

Based on the AGAS concept introduced above, the optimal control problem for

determination of parachute trajectories from a release point to the target point can be

formulated as follows: among all admissible trajectories that satisfy the system of

13

differential equations, given initial and final conditions and constraints on control inputs

determine the optimal trajectory that minimizes a cost function of state variables zρ and

control inputs u
ρ

dtuztfJ
ft

t

),,(
0

0
ρρ

∫= and compute the corresponding optimal control. (2.2)

For the AGAS, the most suitable cost function J is the number of actuator

activations. Unfortunately this cost function cannot be formulated analytically in the form

given by the above expression. Therefore, we investigated other well-known integrable

cost functions and used the results obtained to determine the most suitable cost function

for the problem at hand.

To determine the optimal control strategy our research team applied Pontryagin's

principle [Ref 6] to a simplified model of parachute kinematics. This model essentially

represents parachute kinematics in the horizontal plane (Figure 2.4):

constC
vuy
vux

==
+=
−=

ψ
ψψ
ψψ

&
&
&

cossin
sincos

 (2.3)

In this Non-holonomic system each of four actuators in two control channels can

be activated in the manner allowing the following discrete speed components in the axis

of the parachute frame: []VVvu ;0;, −∈ . We considered these speed components as controls

for the task at hand.

x

y

11

33

22

44

ParachuteParachute

Two pairs ofTwo pairs of
rotating controlsrotating controls

ψ

Figure 2.4 Projection of the optimization task onto the horizontal plane

T

14

The Hamiltonian [Ref 6] for the system (2.3) can be written in the following

form:

() 0cossin
sincos

, fCp
pp
pp

vuH
yx

yx −+

+−
+

= ψψψ
ψψ

 (2.4)

where equations for variables xp , yp , and ψp are given by

()

+−

+
=

==

ψψ
ψψ

ψ sincos
cossin

,

00

vu
vu

ppp

pp

yx

yx

&

&&

 (2.5)

We consider two cost functions

fuel'' minimum -
 timeminimum - 1

0

0

vuf
f

+≡

≡
 (2.6)

According to Reference 5, the optimal control is determined as ()uzpargmaxHuopt
ρρρρ

,,= .
Therefore, for the time-minimum problem the optimal control is given by

()

=

ψ
ψ

sin
cos

, yx ppVsignu , ()

−
=

ψ
ψ

cos
sin

, yx ppVsignv (2.7)

Figure 2.5 shows the graphical interpretation of these expressions. In general, the

vector ()yx pp , defines a direction towards the target and establishes a semi-plane

perpendicular to it that defines the nature of control actions. Specifically, if an actuator

happens to lie within a certain operating angle ∆ with respect to the vector ()yx pp , it

should be activated. For a time-optimum problem since π=∆ two actuators will always

be active. Parachute rotation determines which two. (We do not address the case of

singular control, which in general is possible if the parachute is required to satisfy a final

condition for heading). Figure 2.6 shows an example of time-optimal trajectory. It

consists of several arcs and a sequence of actuations. For this example 1175.0 −= sψ& and

smV /5= but the concept applies to any variation in body error angle.

For the ‘fuel’-minimum problem we obtain analogous expression for optimal

control inputs:

..sincos
sincos
sincos

csyx

yx

yx

uuVpp
VuVpp

VuVpp

=⇒≡+
−=⇒<+

=⇒>+

ψψ
ψψ
ψψ

(2.8)

15

..cossin
cossin
cossin

csyx

yx

yx

vvVpp
VvVpp

VvVpp

=⇒≡+−
−=⇒<+−

=⇒>+−

ψψ
ψψ
ψψ

In this case actuators will be employed when appropriate dot products will be

greater than some positive value. Obviously, this narrows the value of the angle ∆ . In

fact, for this particular cost function, 0→∆ . In general any cost function other than

minimum-time will require an operating angle π≤∆ (Figure 2.7).

Figure 2.5 Time-optimal control

Figure 2.6 Example of the time-optimal trajectory and time-optimal controls

Figure 2.7 Generalized case of optimal control

16

Figure 2.8 Influence of operating angle

Figure 2.8 shows the effect of operating angle on the flight time, 'fuel' and number

of actuator activations. It is clearly seen that the nature of the dependence of the number

of actuations on the operating angle is the same as that of the time of flight. This implies

that by solving the time minimum problem we automatically ensure a minimum number

of actuations. Moreover, it is also seen that the slope of these two curves in the interval

[]ππ ;5.0∈∆ is flat. This implies that small changes of an operation angle from its optimal

value will result in negligible impact on the number of actuations. Therefore, changing

the operating angle to account for the realistic actuator model will not change the number

of actuations significantly.

3. Control Strategy

Preceding analysis suggested that the shape of optimal control is bang-bang.

Therefore, for preliminary numerical simulation in presence of wind the control strategy

was established as follows.

Considering the relatively low glide ratio demonstrated in flight test and used in

the model (approximately 0.4-0.5) with a descent rate of approximately 28ft/s, the AGAS

could only overcome a twelve foot per second (approximately 7kts) wind. It is therefore

imperative that the control system steers the parachute along a pre-specified trajectory, or

a Computed Air Trajectory (CAT), obtained from most recent wind predictions. The

release point of the parachute is the Computed Air Release Point (CARP). This can be

done by comparing the current GPS position of the parachute with the desired CAT

position at a given altitude to obtain the position error (()
fixhfe zzP

=
−= 0

ρρρ
). Furthermore, to

17

eliminate actuator ‘oscillations’, a tolerance cone is established around the planned

trajectory (Figure 2.9) starting at 550ft @ 10,000’ AGL. to 60ft. at ground level. Should

the position error be outside this tolerance, a control is activated to steer the system back

to the planned trajectory. When the system is within 30ft. of the planned trajectory the

control is disabled and the parachute drifts with the wind. Thirty feet was initially

selected to encompass approximately one-sigma of the GPS errors (Selective Availability

off).

The control system relies on the current horizontal position error to determine

whether the control input is required. This position error is computed in inertial

coordinate system and is then converted to the body axis using an Euler angle rotation

with heading only. The resulting body-axis error (bP) is then used to identify which

control input must be activated

Figure 2.9 Control concept

=

e

eb
u

P

P
Rinput ρ

ρ

 (2.9)

Trying to account for maximum refill time and sensors errors we chose 5.2≈∆

radians instead of π=∆ (Figure 2.10). This allows the activation of a single control input

or two simultaneous control inputs.

18

 AA

control ‘D’
is activated

CC

BBDD
direction of
predominant

error

Figure 2.10 Control activation

Both the tolerance cone and the operating angle constraints must be active for a

given PMA to be activated.

Figure 2.11 Example of control histories

Figure 2.11 shows results of a simulation run that provides an insight into this

control logic. The simulation uses a wind prediction profile that matches the wind profile

used in the actual parachute simulation. The parachute is released at an offset from the

ideal drop point of 2500ft. The plots show that the proper PMAs are activated (vented)

when the tolerance cone and the operating angle constraints are active. One can see that

at the end of the simulation that the parachute has just made it within 100m of the target.

This brings up the concept of the “feasibility funnel.” The feasibility funnel is defined as

the set of points maximum distance away from the predicted trajectory for which the

vehicle still has sufficient control authority, for a given wind profile, to land within a

19

certain distance from the target. The third plot in Figure 2.11 shows a line in the

“feasibility funnel.”

B. HIGHLIGHTS OF NPS RAPID FLIGHT TEST PROTOTYPING SYSTEM

(RFTPS)

The purpose of Rapid Flight Test Prototyping System (RFTPS) is to aid the GNC

development process by providing a set of tools for the engineer to verify control

algorithm performance. NPS RFTPS currently uses the Matrix-X® series of products.

Detailed information about RFTPS is provided in references 7 and 8.

The RFTPS ground station is responsible for flight control and data collection,

and consists of a host computer/real-time controller, a communications box, and two

Futaba RC controllers.

The heart of the ground station is the real-time controller. The AC-104 hardware

controller is currently used in the RFTPS as the target. A Windows based personal

computer (PC) serves as the host computer and is networked with the AC-104 via

Ethernet. The host computer generates the model, compiles the code to an executable,

and downloads it to the target controller (AC-104). During the execution of the code the

host monitor’s operation on a user defined Interactive Animation (IA) display and can

provide input to the executable code.

The airborne vehicle is controlled using two Futaba RC controllers. One

controller, referred to as the “slave”, is modified to accept inputs to channels 1 through 4

as direct voltages from the digital to analog module installed in the real-time controller

via a 9-pin connector. The slave converts the voltages it receives as analog input from

the real-time controller to properly formatted PCM signals. The slave then forwards the

PCM signals to standard Futaba controller, referred to as the “master”, from which the

commands are transmitted via radio frequency to the airborne vehicle. The slave

controller is connected to the master via a production Futaba hard line data link cable.

This Slave-Master relationship allows the master to take control of the air-vehicle and

disregard slave (AC-104) inputs.

20

The RealSim AC-104 real-time hardware controller is based on a small, 8” x

5.75”, highly integrated PC motherboard that includes a PC/104 expansion connector.

The AC-104 configuration used in the RFTPS ground station included an AIM16/12

(AIM1612) 16 channel A/D input board, an IP-68332 is a general purpose 68332 micro-

controller module, an IP-Serial Port module, and a Ruby-MM 8 channel D/A output

board. Figure 2.12 depicts a typical hardware set-up.

Figure 2.12 RFTPS Hardware

Installed on the host PC, the MATRIX-X software family includes several

individual, yet related, applications. Xmath is the computational element of the package,

and SystemBuild provides modeling and simulation functionality by using predefined and

user-defined functional blocks to model system elements. AutoCode is an application that

generates C source code from a SystemBuild model. An animation builder enables the

user to build a Graphical User Interface (GUI) referred to Interactive Animation (IA) that

allows real-time inputs and monitoring of system parameters when the controller is

running. The hardware connection editor is used to designate connections between the

I/O ports on the front of the AC-104 and data paths within the code running on the

controller. The RealSim environment allows models developed in SystemBuild to be run

in real-time, connecting to real hardware for real-time simulation, rapid prototyping, and

hardware-in-the-loop modeling.

The RealSim environment is managed using the GUI depicted in Figure 2.13.

[Ref. 9]. The RealSim GUI provides a flow chart approach to the process of developing

an executable file to be run on the AC-104, also referred to as the target controller. Once

21

the left and right paths of the flow chart are completed, the RealSim software on the host

PC generates an executable code, which is downloaded to the target controller via file

transfer protocol (FTP).

Figure 2.13 RealSim Graphical User Interface

22

C. INTEGRATION OF HARDWARE

Master
FutabaController

Slave
FutabaController 9

5

AC104

LAN

AGAS

Futaba Rx
 Xducers

+Vcc
4

PMA3

PMA4

PMA2

PMA1

12Vdc

Futaba Monitor Rx

 Xducers

 Xducers

 Xducers

AIM 16 A to D

IP 68332

Ruby D to A

XDCR 'i' to 'v'

Matrix X
PC

Figure 2.14 HITLv0 Overview

The initial step developed a simple model to interface with the AGAS package in

order to validate and calibrate the integration of hardware with the real-time controller’s

I/O.

There are four interfaces required to for the AC-104 to properly communicate and

monitor commands to the AGAS package. The Ethernet connection between the host and

the target controller, a D/A connection to apply proper voltages to the “Slave” Futaba®,

an A/D connection to read the pressures from the AGAS transducers, and a pulse width

measuring connection from a separate Futaba® receiver to ensure the signal commanded

is actually transmitted.

Commands to the AGAS Fill and Vent valves are from the AC-104 through the

“Ruby” D/A converter. This voltage is converted to a PCM signal and transmitted to the

AGAS via the Futaba® “Slave/Master” arrangement aforementioned in RFTPS. On

23

board the AGAS package the PCM is decoded to an appropriate PWM signal which is

sensed by the Optically Isolated Electronic Switches. When the received pulse width is

greater than the threshold of the sensor the relay closes and the PMA inflates.

Conversely a pulse width detected opposite the threshold the PMAs will actuate (vent).

There are other safety interlock signals which also must be satisfied and are discussed in

Appendix A.

To ensure that the desired command is transmitted we have incorporated a second

Futaba® receiver tuned to the same frequency as the AGAS box and transmitter to read

the pulse-width on the four actuator channels and channel 5 which also indicates the

position of the trainer switch. This PWM signal is provided to the AC-104 via the

Industry Pack®-68332 data acquisition and control module.

Inside the AGAS box on each line between the valves and the PMA is an Entran®

EPO-W41-250P pressure sensor that, when in series with the proper voltage and load,

will produce a current output from 4-20 milli-amps corresponding linearly to 0 to 250 PSI

sensed. These currents are transformed into pressure representative voltages through a

300Ω resistor selected to accommodate the 12VDC sources available. This provides for

linear operation over the full pressure range of the PMAs. The four analog pressure

representative voltages are fed into the AIM16-A/D input module. Note; this is the only

hardwire connection to the AGAS box.

24

Figure 2.15 The configured AC-104

Figure 2.15 shows the hardware to the AC-104 controller for laboratory

communication with AGAS. In the right front of the figure is the pressure sensing

current to voltage board. It has an unseen 12VDC supply, a ribbon cable to the left with

pressure representative voltages to the 50 pin AIM16; and a 9-pin ribbon to the right

connected to the AGAS box pressure transducers. In the center front is the second

Futaba® receiver for signal feedback link. The wire out to the right is the antenna. Out to

the left are the channel outputs to a green breakout board. The ribbon from the breakout

board is attached to the IP-68332 50-pin connector at Port 3. On the right side of the AC-

104, the Ruby 50-pin connector at Port 8 is sending analog commands to the slave

Futaba®. The orange cable is pinned-out to accommodate a direct E-net card to E-net

card connection between the host and target. The system will also work between

multiple hosts and targets via a router with standard LAN cables.

25

Initially certain criteria need to be determined for proper installation of the

hardware connections to the model. In particular, what voltage produces the pulse-width,

which produces an actuation?

1

2
passthrough

5
6

7

8
9

Limiter

4

1

13
dac

1

2

3

4

0.1

SUPER
BLOCK

14
PMA_VtoPSI

10

11

12

13

5
6

7

8
9

1

2

3

4

10

11

12

13

Figure 2.16 Top Level SuperBlock for Calibration

Figure 2.16 depicts the inputs and outputs of the model. “PMA_VtoPSI” is a

lower level SuperBlock in HITLv0. The “dac” block in Figure 2.16 limits the Digital to

analog voltage commands to preclude out of range voltages from Ruby being applied to

the slave Futaba®. The “passthrough” is a unitary Gain block applied to the incoming

pulse width measurements (XMATH/SystemBuild® does not allow direct connections

between inputs and outputs in the model). The “PMA_VtoPSI” lower level SuperBlock

converts the pressure representative voltage signal input to a number signifying PMA

pressure in PSI.

26

PMA1_psi = 52.08*(PMA1_press_volt

 - 1.2)

3

1

PMA2_psi = 52.08*(PMA2_press_volt
 - 1.2)

13

2

PMA3_psi = 52.08*(PMA3_press_volt

 - 1.2)

2

3

PMA4_psi = 52.08*(PMA4_press_volt
 - 1.2)

23

4

PMA1_filter_psiBlock
Script

4
Zero_Adj_1

PMA1_psi

PMA2_filter_psiBlock
Script

1
Zero_Adj_2

PMA2_psi

PMA3_filter_psiBlock
Script

5
Zero_Adj_3

PMA3_psi

PMA4_filter_psiBlock
Script

6
Zero_Adj_4

PMA4_psi

1

2

3

4

Figure 2.17 PMA voltage to pressure (PMA_VtoPSI) SuperBlock

Figure 2.17 shows the model within the “PMA_VtoPSI” SuperBlock. Each

pressure-represented voltage is processed through an algebraic block that multiplies the

input less the P0 voltage value by a constant. This output is in accordance with the

Voltage vs. Pressure expected for the current provided across the 300 ohm resistor.

Figure 2.18 Interactive Animation GUI for HITLv0

27

Figure 2.18 represents the IA developed for this model. There are four sliders to

assign the voltage out to the slave controller. These are inputs to the model. The voltage

out is a model command transmitted to the Ruby board after the limiter (Figure 2.16).

Under PMA threshold are four “LED” type indicators that represent a fill or vent PW

received by the signal feedback link and IP-68332. Red for vent (actuate) and green for

fill. The signal from the IP-68332 is an input to the model at the "passthrough" block and

the IA inputs are outputs from the same block. The number below each ‘LED’ is pulse

width measurement in µsec for the respective PMA channel. The Bottom ‘LED’ depicts

Channel 5 and indicates whether the master is in the trainer mode, therefore allowing

controller commands transmitted. To the right are redundant pressure indicators in gauge

and numeric representations. The inputs to both these representations are the outputs of

the “PMA_VtoPSI” SuperBlock.

The Hardware Connection Editor (HCE) function in Figure 2.13 allows mapping

of input sources and output targets. There are 13 inputs and 13 outputs. The IA slider

bars provide inputs 1-4, the IP-68332 pulse width measurement circuitry provides inputs

5-9, and the AIM16-A/D pressure representative voltages provide inputs 10-13.

Outputs 1-4 feed the Ruby D/A digital commands to apply voltage to the slave

Futaba®. Outputs 5-13 are not connected to hardware but provide signals to the IA

display.

With the executable running on the AC-104, all four of the PMAs were inflated

and deflated. The threshold pulse widths were calibrated and the Optically Isolated

Electronic Switch thresholds were set. The voltages representing PMA pressures were

displayed on the controller GUI and corresponded well with expected values and

facilitated the setting of AGAS pressures. .

D. APPLYING CONNECTIONS TO AGAS MODEL

In Figure 2.16 there are 13 inputs to the calibration model for AGAS control.

These inputs are incorporated into the parachute simulation model.

28

The first four inputs in HITLv0 were the manual voltage control to the slave

Futaba®. Since the model will run autonomously these inputs are deleted.

The next five are from the pulse width measurements for the signal feedback link.

As we noted in HITLv0 one cannot assign an input to an output so there is a unitary gain

block placed in the top level of HITLv1. It is the “passthrough” block in the lower left

corner of Figure 22.

The last four inputs are the pressure representative voltages from the AIM16 A/D

card. These inputs are applied to pins 5-8 of block 93, “Real_PMA_Data” in the

“Vehicle Model.” This block along with switch 92 is new in the model to incorporate the

actual PMA pressures.

FxB_lb

FyB_lb

FzB_lb

MxB_ftlb

MyB_ftlb

MzB_ftlb0.1

SUPER

BLOCK

1
Aerodynamics

1
2
3

1
2
3
4

6

5

1

4

2

6

3

Read from
VARIABLE

vehicle_weight>Global<

2
vehicle_weight

acceler
body axi

1
2
3

PMA1_pos_psi

PMA2_pos_psi

PMA3_pos_psi

PMA4_pos_psi

fill_time_sec

reservoir_pressure_psi0.1

SUPER

BLOCK

3
New PMA model

1 pma1_on_off

2 pma2_on_off

3 pma3_on_off

4 pma4_on_off

PMA1_FutabaVolt
PMA2_FutabaVolt
PMA3_FutabaVolt
PMA4_FutabaVolt
PMA1_psi_adj
PMA2_psi_adj
PMA3_psi_adj
PMA4_psi_adj0.1

SUPER

BLOCK

93
Real_PMA_Data

1 pma1_on_off

2 pma2_on_off

3 pma3_on_off

4 pma4_on_off

5 AtoD_ch1

6 AtoD_ch2

7 AtoD_ch3

8 AtoD_ch4

u1

u2

u3

y

92
5
6
7
8

1
2
3
4

9

17

18

22
23
24
25

13

14

15

16

Figure 2.19 Partial expanded view of the HITL simulation

An additional input is the switch control signal for block 92 in order to select

model derived PMA pressure or real PMA pressure for determination of the aerodynamic

performance.

In the vehicle model, aerodynamic performance, or PMA induced motion in

flight, is determined by riser length, which has been derived as a function of PMA

29

pressure. In the original model a “pma#_on_off” command was sent to the

“PMA_model” block that extrapolates the pressure out as a function of estimated

reservoir pressure remaining, and time. This output is fed to the “Aerodynamics

SuperBlock ”

In the modified model the signal is fed to “switch 92” which now controls the

logic feed to the “Aerodynamics SuperBlock ” through a selector on the IA display.

Of the outputs used to calibrate the AGAS box with the software the control

voltage, provided by the “Real_PMA_Data” block, to the slave Futaba® is still required.

The vehicle model is already sensing “pma#_on_off” commands for the “PMA_model”.

These signals are also sensed at “Real_PMA_Data” which converts them to a digital

value representative of the voltage desired from the Ruby D/A card out to the slave

Futaba® (pins 22-25 on block 93 in Figure 2.19).

The pulse widths sensed on the IP-68332 are provided at the “passthrough” block

in the top level for display on the IA.

In the control strategy a CARP and CAT are required. To do this the CARP

program is executed in XMATH as a continuous model using the chosen zero-hour wind.

The trajectory thus generated is saved. Then we invoke RealSim®, load the AGAS

model, load the predicted trajectories, code up the model with the new wind variable,

normally time late, and download it to the AC-104 target.

30

E. COMPLETE SET-UP FOR HITL

HITL Hardware

HITL Computer

PMAsPMAs

Parachute
Model

Sensor
Model

PressurePressure
SensorsSensors

CARP
Emulator

GNCGNC
SystemSystem

FutabaFutaba
SystemSystem A/DA/D

FutabaFutaba
ReceiverReceiver

D/AD/A PWMPWM

Figure 2.20 Functional diagram of the HITL simulation

Consider Figure 2.20 It represents a functional diagram of the HITL simulation

used to test the GNC algorithm. The hardware component of the simulation was the

actual PMA system developed by Vertigo Inc. The actuator commands generated by the

GNC system were transmitted to the PMA’s via the master-slave Futaba® RC transmitter

system. To insure the proper functionality of Futaba® transmitter system the PCM (pulse

code modulated) commands sent by the master Futaba® transmitter were sensed by a

separate Futaba® receiver. The pulse width of the PWM (pulse-width modulated) signal

generated by this receiver was sensed by the PWM device installed in the HITL

computer. The pressures in each of the four PMA actuators were sensed by the pressure

transducers installed in the PMA box.

The complete physical setup used for HITL tests is shown in Figure 2.21. In

addition to the hardware components discussed above, this figure includes pictures of the

24 foot pneumatic muscles with one end of the PMAs near the actuator box fixed to the I-

31

beam in the background and 50 lb weights attached to the bitter end, the AC104 computer

system with the host computer, the Futaba® receiver and of the 4500 psi nitrogen tank

used to fill the PMA’s. 50 lbs is far less than the PMAs are capable of lifting and was

primarily used for demonstration of action, to aid a more complete actuation (venting),

and to dampen the fill response. Inside the shelf is the host HITL computer with the GUI

displayed on the screen. On top of the shelf are the master Futaba® with the slave behind

it. The monitor on top displays the status of the AC-104. To the right on the small stand is

the AC-104 with the appropriate connections. The only hardwire between the PMA box

and the control equipment is the 9-wire for pressure reading. Since we operated indoors

at a reduced tank pressure we kept the box connected to a tank of maximum 2000 psi to

minimize internal tank depletion during tests.

PMA Risers

HITL Host Computer

PMA Box

AC-104

Futaba Receiver

HITL Setup

Nitrogen Tanks

Figure 2.21. Complete HITL setup

F. COMPARISON OF ACTUAL FILL TIMES WITH MODEL FILL TIMES

We ran the program three times using the same two-hour time late wind data for

the CARP and CAT computations and the same wind data and release points for the drop

32

runs. The first run on the model simulated no control. The second run on the model did

trajectory seek using the modeled actuator fill times compensated for a low pressure

source (2k psi vice 4.5k psi). The third run replaced the simulated model fill times with

actual hardware fill times.

The No-Control drop missed the target by 1,500 feet. The simulated pressures

drop using low pressure fill times missed the target by 21 feet. The HITL drop reading

real PMA pressures missed the target by 130 feet. The 130’ miss is within the desired

tolerance but the disparity between the simulated and real misses required investigation.

On plotting the fill response we noted that in the simulation, even with the model

fill time constant set high (30.38 sec), the simulation would fill faster than the real PMAs

utilizing HITL. Figure 2.22 shows the disparity of rise time of PMA2 for the HITL

readings (blue) and the model simulated fills with high fill time constants set (red).

Figure 2.22 PMA pressure simulated (red) and PMA pressure HITL (blue) vs. time.

G CORRECTION TO MODEL TO EMULATE ACTUAL PMA
PERFORMANCE
A closer look at the plots of Figure 2.22 reveals that the rise time for the

simulated runs in red are exponential in nature. Figure 2.23 is the SuperBlock that

simulates PMA response in the model. Block 12, the Muscle Time Constant” block

script, determines the fill response of the PMA.

33

valve1_cmd_psi

valve2_cmd_psi
valve3_cmd_psi

valve4_cmd_psi
NS:4

STATE
SPACE

2
Valve Dynamics

PMA1_cmd_psi

PMA2_cmd_psi

PMA3_cmd_psi

PMA4_cmd_psi

Block

Script

12
Muscle Time Constant
1

2

3

4

1

2

3

4

(Tz)

(z-1)
X0= %pma_max_pressures

31

2

3

4

reservoir_pressure_psi (Tz)

(z-1)

X0= %init_reservoir_press

1
Reservoir Pressure

PMA1_pos_psi

PMA2_pos_psi

PMA3_pos_psi

PMA4_pos_psi Limiter

%pma_max_pressures

0

4
actuator limit

1

2

3

4

Limiter

%pma_max_fill_rate

0

5
actuator limit

1

2

3

4

141

2

3

4

151
2
3
4

Linear

13
press vs press
Delta reservoir

fill_time_sec

Linear

23
reservoir pressure

Fill time vs

Read from
VARIABLE

deflate_time
>Global<

31

Y0= 0

-1
Z

61

2

3

4

Y0= 0

-1
Z

16

PMA2_cmd_psiY = 175 -
 175*U

28

2 pma2_on_off

PMA4_cmd_psiY = 175 -
 175*U

38

4 pma4_on_off

PMA1_cmd_psiY = 175 -
 175*U

99

1 pma1_on_off

PMA3_cmd_psiY = 175 -
 175*U

98

3 pma3_on_off

6

1

2

3

4

5

Figure 2.23 PMA model for HITL w/ block 12 highlighted

In the block script the fill time is divided by 5 to represent a time constant for the

integrator. From this we expect an exponential response in fill time. This is a valid

assumption for the beginning and end of the fill, but as HITL has demonstrated, the fill

time vs. pressure is predominantly linear. In essence the modeled pressure reaches

approx 65% of its max value in 20% of the fill time vice 65% of the fill time for a linear

response. In Figure 2.24 one notes that at 150PSI setting, 65% of the pressure equates to

82% of the PMA effective length which in turn represents approx. 82% of the driving

force in the current model.

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

Pressure (psi)

D
is

pl
ac

em
en

t (
fe

et
)

Static measurements after
multiple inflations at 100, 150,
and 175 psi

Dynamic measurements from one
inflation to 175 psi (low resevoir pressure
so fill took approx 15 secs)

Figure 2.24 PMA Length Change vs. Pressure

34

This helps explain why the simulated model is acquiring the target better than the

HITL runs. The model has the platform responding 5 times faster than the PMAs

actually respond.

The discrepancy observed during the test was used to change the AGAS model in

the simulation. We kept the fill time script to model the beginning and end fill time

constants for determining length and reservoir depletion but added a limiter to map

linearly what the HITL fills demonstrate. In Figure 2.25 is the fix.

valve1_cmd_psi
valve2_cmd_psi

valve3_cmd_psi
valve4_cmd_psi

E
E

2
amics

Block

Script

12
Constant

Muscle Time

1

2
3

4
1
2
3
4

(Tz)

(z-1)
X0= %pma_max_pressures

31
2
3
4

PMA1_pos_psi
PMA2_pos_psi
PMA3_pos_psi
PMA4_pos_psi Limiter

%pma_max_pressures

0

4
actuator limit

1
2
3
4

Limiter

12

0

5
actuator limit
1
2
3
4

141
2
3
4

151
2
3
4

31

Y0= 0

-1Z

61
2
3
4

Linear

96
Fill time limiter

Block
Script

97
linearizer
Fill time

1
2
3
4

1
2
3
4

Figure 2.25 Linearized PMA model

In the box is the addition to the model in Figure 37. First we provide a limit that

the fill rate cannot exceed. These are derived from the slopes of the HITL PMA fills of

Figure 36. The key in to determine which limit is supplied from block 23, which is the

experimental data of fill rate vs. reservoir pressure.

The modified PMA model was used to compare the AGAS performance predicted

by the computer simulation with the performance obtained in HITL. The predicted miss

distance in simulation with the limiter was 121 feet, while the miss distance observed in

HITL was 130 ft. Figure 2.26 includes time histories of the fill and vent responses in

PMA’s 2 and 4. The red line shows responses produced by the PMA model prior to the

change, while the green line shows the responses of the modified model. Responses of

35

the actual PMA’s are shown in blue. Incidentally, remember the miss distance predicted

by the simulation that used the PMA model shown in red was 21 ft. This test clearly

demonstrated the value of hardware-in-the-loop simulation.

0 50 1 0 0 1 5 0 2 0 0 25 0 30 0 35 0
0

5 0

10 0

15 0

20 0

P
M

A
2

P
re

ss
ur

e

T im e (s ec)

P M A # 2 & #4 F il ls

P re -H ITL s im re s po n s e
R e a l P M A res p o ns e
N e w M o d e l re s po n s e

0 50 1 0 0 1 5 0 2 0 0 25 0 30 0 35 0
0

5 0

10 0

15 0

20 0

P
M

A
4

P
re

ss
ur

e

T im e (s ec)
Figure 2.26 Fill time response for PMAs 2 and 4

Figure 2.27 Comparison of the modeled and actual PMA responses

NOTE: All the aforementioned data was obtained at a lower reservoir pressures

than the system normally operates. The fill times are not representative of actual fill

times. The analysis is valid for the study and as more experimental data is acquired from

future drops the PMA linearization setting can be refined.

36

THIS PAGE INTENTIONALLY LEFT BLANK

37

III. FLIGHT TEST USING GROUND STATION

A. COMPONENTS
The initial flight test architecture is shown in Figure 3.1.

Ground StationGround Station

ParachuteParachute

PMAsPMAs SensorsSensors

Host PC/AC-104Host PC/AC-104

RS232RS232

Sensor data

ReceiverReceiver

PMAPMA
FutabaFutabaReceiverReceiver FreewaveFreewave

FreewaveFreewave

Time stamping

ControllerController DataData
AcquisitionAcquisition

CARPCARP
Control commands

Figure 3.1 Flight test setup

The guidance and control algorithms are implemented on the ground based

computer system (AC-104 and host). Measurements of the payload system state are

transmitted from the payload package to the ground via RF modem. System states

include position and velocity derived from a twelve channel GPS at 1 Hz and heading

information derived from an electronic compass at 2 Hz. The 2 Hz update rate is

sufficient for the anticipated frequency spectrum of the velocity of the platform and of the

wind data. The ground computer processes state information and transmits control

commands via Futaba® RC system

These initial efforts will define the interface architecture between the GNC

system, PMA actuators and onboard GPS and heading sensors and will provide flight

data to refine the G-12 parachute model for further studies.

The ground control station (Figure 3.2) employs the same hardware as was used

in HITL simulation. Additional equipment includes a serial communications card on the

SBS GreenSpring Flex/104A PC/104 carrier board accessed on the AC-104. A Freewave

38

RF modem is connected to it. A linear amplifier for the Master Futaba® to enhance

control up to 10,000 feet will be used for payload drops.

Figure 3.2 AGAS control station

Figure 3.3 The AGAS package rigged for deployment

Linear amplifier

AC 104

Futabas RF Modem

Host PC

39

The initial test package (Figure 3.3) includes the AGAS box depicted in chapter II

with all its inherent equipment and PMAs, one G-12 parachute, a GPS, a heading

reference system, a temperature sensor, the pressure sensing circuitry, on-board data

processor and storage, and an RS-232 capable Freewave® wireless data transceiver. The

payload package itself is only about a quarter of the size of the payload shown.

Honeycombed cardboard comprises the rest to absorb the landing shock and limit

instrumentation damage

Figure 3.4 Overview of top-level SuperBlock for PITL

Configuration of the AGAS GNC for flight test brought together three systems

into one model. From the AGAS Matrix-X model we incorporate the “Controller” block.

From the calibration model we utilize the manual control and system monitoring

functions. Finally we bring in a third, new, subsystem that replaces the GPS and heading

models by providing serial input of the actual platform position and attitude.

Figure 3.2 shows the flight test code named Parachute in the Loop (PITL) that

was developed in the Xmath/Realsim environment to flight test the GNC system. The

40

model is also used to test communication and control links with the airborne payload

package.

B. AGAS SERIAL DATA INPUT

1. Serial Data
A FreeWave wireless transceiver onboard the AGAS package sends the status of

the package in accordance with the Interface Control Document (ICD) located in

appendix B. The ICD was written in anticipation of proceeding towards a serial uplink

for a smoother transition to autonomous operations. The heading sensor provides

heading, temperature, Hx, Hy, Hz, along with an internal value used for correction of pitch

and roll. Time, latitude, longitude, altitude, ground track angle, and velocity components

NEU of the package are provided by the onboard GPS. Muscle state is a binary

representation of the pressure of the muscle (0 if < 80 psi, 1 otherwise). Command state

is reserved for use in the autonomous model.

Although only heading, latitude, and longitude of the package are all that is used

for control command computation, the algorithm for data analysis and drop monitoring

uses all the above data.

2. Reading the Serial Data
The IP serial port on the face of the AC-104 has two channels for reading serial

data. Three pins are utilized with RS-232 formatted data. For receiving and transmitting,

only one channel is required per modem. When a RealSim® model is compiled and

linked a file named ‘SA_USER.CMD’, which resides in the root directory of the model,

is referenced for other files that need to be compiled with the autocoded model. For

Serial I/O one of these files needs to be a variant of the template “USER_SER.C”

provided with the Matrix-X/RealSim® software. This code sparse's the RS-232 data

received to Hardware Connection Editor (HCE) channels for use in the model. It also

reads and buffers the data for transmission that the HCE send to it. Appendix C has the

latest version of “USER_SER.C” which is being used by the autonomous version.

41

In the last few pages of “USER_SER.C” under the ‘serial_in’ section the raw data

is can be manipulated for conversion into the proper format to the model. “USER_SER”,

in this application just collates and corrects for scaling factors. Compensation for biases

and unit transformations are conducted in the “SerData” SuperBlock.

Discrete SuperBlock
SerData

Sample Period
0.2

Sample Skew
0.

Inputs
16

Outputs
24

Enable Signal
Parent

GroupId
0

latitude0_Deg
longitude0_deg
altitude0_m_msl
xLTP_m
yLTP_m
zLTP_m0.2

SUPER

BLOCK

2
LTP_coordinates

9Lat_rad

10Lon_rad

11Alt_m

Temp_C
Heading_rad
Roll_deg
Pitch_deg
H_x
H_y
H_z
Time_GPS
Lat_rad
Lon_rad
Alt_m
GrdTrk_rad
VelNorth_fps
VelEast_fps
VelUp_fps
Roll_rad
Pitch_rad

Block

Script

1
Raw data preprocessing

1 SerTempC
2 SerHeadingDeg
3 SerRollDeg
4 SerPitchDeg
5 SerHx
6 SerialHy
7 SerialHz
8 SerTimeGPS
9 SerLatDeg
10 SerLonDeg
11 SerAlt_m
12 SerGrdTrkDeg
13 SerVelNorth
14 SerVelEast
15 SerVelUp

1
12

Bytes captured
Number of

16

Alt_ft

xLTP_ft

yLTP_ft

zLTP_ft

3.2808

3
m2ft

11Alt_m

4xLTP_m

5yLTP_m

6zLTP_m

15
16
17

1
2
3
4
5
6
7
8
9
10

12
13
21
22
23
24

14

11

18

19

20

Figure 3.5 SerData SuperBlock

Inside “SerData” the Block Script removes biases intrinsic in the downlink and

converts the data to the units required for controller operation. The controller works in

units of feet and radians in the Local Tangent Plane (LTP), most of the equations and

functions for coordinate transformation use meters and radians, display units are in feet

and degrees.

Platform position in space is provided as Latitude/Longitude in degrees, and

Height Above Ellipsoid (HAE, {altitude}) in meters. The “LTP coordinates” SuperBlock

converts this to a Local Tangent Plane coordinate where the origin of the LTP is the

Lat/Lon/HAE of the Drop Zone (DZ). {Note; in this paper when reference is made to DZ

it is referring to the desired point of impact of the deployed package}.

42

Read from
VARIABLE
lon0

>Global<

1
longitude_0

Read from
VARIABLE
lat0

>Global<

2
latitude_0

Read from
VARIABLE
alt0

>Global<

3
altitude_0

x0ecef_m

y0ecef_m

z0ecef_m

Block
Script

10
ECEFs origin

latitude0_Deg

longitude0_deg

altitude0_m_msl

xecef_m

yecef_m

zecef_m

Block

Script

9
ECEF coordinates

1x0ecef_m

2y0ecef_m

3z0ecef_m

1 Lat_rad

2 Lon_rad

3 Alt_m

xLTP_m

yLTP_m

zLTP_m

Block

Script

4
LTP coordinates

1xecef_m

2yecef_m

3zecef_m
latitude0_Deg

longitude0_deg

2

1

3

4

5

6

Figure 3.6 LTP coordinates SuperBlock

The coordinates of the DZ are read from the defined variables during operation

and coding as latitude_0/longitude_0/altitude_0. Position of the platform is provided in

serial downlink and transformed to Lat_rad/Lon_rad/Alt_m. The coordinates of the DZ

are transformed to ECEF as in Eq 3.2.

Using WGS-84 parameters from Reference 8

e

2 2
2 2

2
2

Radius of the earth r =6,378,137
flattening 298.257223563

1ellipticity 1

1eccentricity 1 1 1

11 1 0.006694379991
298.257223563

p

e

p

e

f
r

e
f r

r
ecc

r f

ecc

≡
≡ =

≡ = = −

≡ = − = − −

 = − − =

Equation 3.1 Eccentricity of the earth in WGS-84

43

2eccentricity ecc2=0.006694379991
Radius of the earth @ equator h_ecv=6,378,137
lat0 Latitude of origin lon0 Longitude of origin
h0=altitude of origin above ellipsoide

hh0 Height of ellipsoi

≡
≡

≡ ≡

≡
()

() () ()
() () ()

()() ()

2

Origin

Origin

Origin

h_ecvd in ECEF=
1-ecc2*sin lat0rad

ecef= hh0+h0 cos lat0 cos lon0

ecef= hh0+h0 cos lat0 sin lon0

ecef= hh0 1-ecc2 +h0 sin lat0

X

Y

Z

Equation 3.2 ECEF coordinates of the origin (DZ)

These are subtracted from the ECEF coordinates of the platform to define the

position of the vehicle from the LTP origin in ECEF coordinate system in the

“ECEF_coordinate” block by way of Eq. 3.3

()
() () ()

2

package ori

Lat latitude of the package
Lon longitude of the package
h Altitude of the package above elipsoid
hh Height of ellipsoid for Lat/Lon of package

h_ecvhh=
1-ecc2*sin Lat_rad

X ecef= hh+h cos Lat cos Lon -X

≡
≡

≡
≡

() () ()
()() ()

gin

package origin

package origin

ecef

Y ecef= hh+h cos Lat sin Lon -Y ecef

Z ecef= hh 1-ecc2 +h sin Lat -Z ecef

Equation 3.3 Position of the platform wrt the DZ in ECEF coordinates

Lastly the vector is transposed to Cartesian coordinates of the DZ-LTP in

“LTP_coordinates” block with Eq 3.4.

44

() ()
()

() ()
()

package package
package

package

package package package

package
package

- X ecef sin(Lat)cos(Lon)- Y ecef sin(Lat)sin(Lon)
X ltp=

 + Z ecef cos(lat_rad)

Y ltp=- X ecef sin(Lon)+ Y ecef cos(Lon)

X ecef cos(Lat)cos(L
ltp=Z

()
()

package

package

on)+ Y ecef cos(Lat)sin(Lon)

Z ecef sin(Lat)

+

Equation 3.4 Position of the platform in LTP coordinates

C. PWM CONTROLLER

1. The “Controller”
The operation of the “Controller”, for the most part, is as explained in Reference

5. I will highlight a few exceptions used in the flight test controller. Figure 3.7 is the

“controller” SuperBlock.

2

2

2 yLTP_ft

12
1

1 xLTP_ft Y = U1< -U2
162Normalized_X

Cos_half_OpA

Y = U1>U2
152Normalized_X

Cos_half_OpA

Y = U1>U2

43Normalized_Y

Cos_half_OpA

Y = U1< -U2
143Normalized_Y

Cos_half_OpA

STATE

DIAGRAM

1
Tolerance

1

outercone

inputs: u;
outputs: y;

float u, y;

if u>18000 then
 y=1050;
elseif u>16000 then
 y=950;
elseif u>14000 then
 y=850;
elseif u>12000 then
 y=750;
elseif u>10000 then
 y=650;
elseif u>8000 then
 y=550;
elseif u>6000 then
 y=450;
elseif u>4000 then
 y=350;
elseif u>2000 then
 y=250;
else
 y=150;
endif;

33
OuterCone

z_positive

PMA1_on_offY = U1 and U2
27actuate PMA 1

PMA2_on_offY = U1 and U2
17actuate PMA 2

PMA4_on_offY = U1 and U2
18actuate PMA 4

PMA3_on_offY = U1 and U2
26actuate PMA 3

1
44

3 zLTP_ft

xLTPvs_xCARP

yLTPvs_yCARP-1

9Pos err X

Pos err Y

Block
Script

98
Op_Angle
Cos_Half_

8

Pred_Pos_x

Pred_Pos_y

0.2

SUPER

BLOCK

10
Target_CARP

7 Traj0_Target1_switch

3 zLTP_ft

radial error

Normalized_X

Normalized_Y

BodyErrAngle_deg0.2

SUPER

BLOCK

23
Errors_in_Body

Pos err X
Pos err Y

Zero_Set
Zero_Set

6 Heading_rad

9 Real0_Sim1_switch

10 SimErrAngle

Zero_Set
Read from

VARIABLE
zero

>Global<

20

7

1

2

4

3

12

13

14

16

10

11

5

6

8

15

Figure 3.7 Controller SuperBlock

45

In the “Error_in_Body” block the position errors in X, Y, and Z and the heading,

roll and pitch are converted to body fixed coordinate system to develop an error angle

relative to the body and the PMAs. For this transformation the Roll and pitch data

provided from the heading sensor is not valid and they are set to zero. Also as x and y

position are determined from a lookup table for a given z, z is also set to zero.

Two other minor additions are the “Target_CARP” and ”Cos_Half_Op_Angle”

blocks. “Target_CARP” allows the ground station operator to select either target seek,

drive towards the lat/lon defined by the DZ, or trajectory seek as previously discussed.

“Cos_Half_Op_Angle” provides for an interactive modification of the operating angle.

The output of the controller is processed through a script to provide the proper

voltages to the Futaba® for correct PMA actuation.

2. Control analysis of PCM system.
For miscellaneous and sometimes painful reasons we did not have a fully

successful drop using the PCM Futaba® Uplink. Our problems were not with the

architecture but ranged from safety lanyards not actuating to PMAs crossed or pressure

hoses parting. Out of the drops three in particular provided significant insight to

precision guided airdrop of a round canopy

On 15 March 2001 the PMAs failed to inflate due to an interlock problem on the

package. The radial miss distance was outside the desired goal. The two valuable pieces

of data in Figure 3.8 are that the rotating platform generated ground station commands

similar to the concepts envisioned and depicted in Figure 2.6 “Example of the time-

optimal trajectory and time-optimal controls”, and Figure 2.11 “Example of control

histories.” The other significant data point is that the platform is rotating as modeled in

both Refs 4 and 5. Take note, this drop had no controls and therefore no drive.

46

300250200150100500 350

PM
A1

0.8
0.6
0.4
0.2

0

1
Controls Data

300250200150100500 350

PM
A2

0.8
0.6
0.4
0.2

0

1

300250200150100500 350

PM
A3

0.8
0.6
0.4
0.2

0

1

300250200150100500 350

PM
A4

0.8
0.6
0.4
0.2

0

1

Time (sec)
300250200150100500 350

Er
ro

r A
ng

le
(d

eg
)

0
-100

100

Tue Mar 20 200112:51:36

Figure 3.8 15 March 2001 Control Data

250200150100500 300

PM
A1

0.8
0.6
0.4
0.2

0

1
Controls Data Command

Pressure

250200150100500 300

PM
A2

0.8
0.6
0.4
0.2

0

1 Command
Pressure

250200150100500 300

PM
A3

0.8
0.6
0.4
0.2

0

1 Command
Pressure

250200150100500 300

PM
A4

0.8
0.6
0.4
0.2

0

1 Command
Pressure

Time (sec)
250200150100500 300Er

ro
r A

ng
le

 (d
eg

)

0
-100

100

Wed May 09 200114:31:50

 Figure 3.9 09 May 2001 Control Data

On 9 May 2001 (Figure 3.9) PMAs 2 and 3 were crossed and therefore failed to

provide the desired drive. What did happen on this drop is that PMAs 1 and 4 remained

inflated (zero on plots at this time) and 2 and 3 provide some driving force. Note that

47

with a driving force the parachute did not rotate. This is possibly due to the counter

acting PMAs 3 and 2 but it does provide for a potential change in the model. At around

150 seconds on PMA2 there are multiple commands to vent that do not have time to

actuate. They correspond to unsteady deviations in the heading and consequently the

body error angle. This “chatter” is due to variation about the command threshold of the

particular PMA.

On 8 May 2001 PMA 3’s pressure hose parted from the PMA and could not

pressurize. Fortunately this PMA was supposed to be vented to get to the desired

trajectory. In Figure 3.10 you will note that the package navigated directly to the

trajectory but as it got close and PMA three was supposed to fill the adverse drive forced

it even farther off trajectory. Note that in Figure 3.10 the parachute never completed one

full rotation.

Parachute
CARP

X_ltp (ft)
500040003000200010000-1000 6000

Y_
ltp

 (f
t)

2000

1000

0

-1000

3000 Parachute
CARP

Z_ltp (ft)
6000500040003000200010000-1000 7000

Er
ro

r v
s

CA
RP

 (f
t) 3000

2000

1000

0

4000

X_ltp (ft)
500040003000200010000-1000 6000

Z_
ltp

 (f
t)

6000

5000

4000

3000

2000

1000

0

-1000

7000 Parachute
CARP

Tue May 08 200110:56:29

Figure 3.10 08 May 2001 Trajectory Data

48

The PCM control testing of AGAS provided valuable information while the serial

control package was being developed. For GNC we noted that the heading reference has

stability problems either due to oscillations of the parachute or coning action, and that the

platform does not necessarily rotate when provided a driving force.

6000500040003000200010000-1000 7000

300

200

100

0

400

Figure 3.11 08 May 2001 Heading Data

D. SERIAL CONTROLLER

Temp_C
Heading_rad
Roll_deg
Pitch_deg
H_x
H_y
H_z
Time_GPS
Lat_rad
Lon_rad
Alt_ft
GrdTrk_rad
VelNorth_fps
NumbBytes
latitude0_Deg
longitude0_deg
altitude0_m_msl
xLTP_ft
yLTP_ft
zLTP_ft
VelEast_fps
VelUp_fps
Roll_rad
Pitch_rad

0.2

SUPER

BLOCK

3
SerData

1 SerTempC

2 SerHeadingDeg

3 SerRollDeg

4 SerPitchDeg

5 SerHx

6 SerialHy

7 SerialHz

8 SerTimeGPS

9 SerLatDeg

10 SerLonDeg

11 SerAlt_m

13 SerGrdTrkDeg

12 SerVelNorth

20 SerVelEast

21 SerVelUp

14 NumBytesRx

PMA1_on_off
PMA2_on_off
PMA3_on_off
PMA4_on_off
Normalized_X
Normalized_Y
outercone
radial error

Pred_Pos_y
Pred_Pos_x
z_positive
xLTPvs_xCARP
yLTPvs_yCARP
BodyErrAngle_deg
Cos_half_OpA

0.2

SUPER

BLOCK

4
Controller

18 xLTP_ft

19 yLTP_ft

20 zLTP_ft

23 Roll_rad

24Pitch_rad

2Heading_rad

23 Traj0_Target1_switch

26 OpAngle

24 Real0_Sim1_switch

25 SimErrAngle

Cmd_Out_1

Cmd_Out_2

Cmd_Out_3

Cmd_Out_4

u1

u2

u3

y

15
Switch
Aut_Man

1 PMA1_on_off

2 PMA2_on_off

3 PMA3_on_off

4 PMA4_on_off

22 Auto0_Man1_switch

15 ManCmd_1

16 ManCmd_2

17 ManCmd_3

18 ManCmd_4

Heading_Deg

GrdTrk_deg1

312 SerHeadingDeg

13 SerGrdTrkDeg

Lat_Deg

Lon_Deg
1

-1

19 SerLatDeg

10 SerLonDeg

PMA1press
PMA2press
PMA3press
PMA4press

Block
Script

5
Pressures Recovering

19 Pressures

Read from
VARIABLERel_alt
>Global<

7
Release Alt_ Linear

8
X release pt

Release_ALT

Linear

9
Y release pt

Release_ALT

CommCount

E 0.2

SUPER
BLOCK

2
CommCounter

1
2
3
4

5

PressCount

E 0.2

SUPER
BLOCK

47
PressCounter

1
2
3
4
5

PMA1State
PMA2State
PMA3State
PMA4State

Block
Script

6
State Commanded

27 SerState

1

3
4
5
6
7
8
9
10
11

12
14
15
16
17
18
19
20
39
40

25
26
27
28

30
31
32
33
34
35
36

21

22

23

24

2

13

37

38

41
42
43
44

45

46

29

47

48
49
50
51

Figure 3.12 Serial Control Model

49

The significant change in the code for serial control from that of Figure 3.4 is the

HITL and the PMA_Cmd2Volt blocks. Sans the Futaba®, the command out is simply

loaded into a channel in the HCE for execution in USER_SER for transmission. The

PWM feedback and D/A output ports are idle. IP serial is the only port now used on the

AC-104. Transitioning to a serial commanded system was integral to the development of

the autonomous system. In this architecture GNC algorithms are evaluated and rapidly

modified prior to implementation into an autonomous C-code.

This step also provides for troubleshooting of the new control system

incorporated in the navigation package, which replaces the external loop consisting of the

Futaba® receiver and Optically Isolated Switches.

The subroutine “USER_SER” takes the command outputs via the HCE and

manipulates the output to the requirements of the ICD in Appendix B. In Appendix C

under ‘serial_out’ the output is held in a buffer. Bytes 0-2 of the buffer are always the

same IAW the ICD. Bytes 3 and 4 are functions of the values output from the HCE and

stored in variable named ‘model_float’. These values are run through a logic set to

format the control command output. Bytes 5 and 6 of the buffer increment each time the

data transmits.

Figures 3.13 and 3.14 show the new AGAS package. The design incorporated

lessons learned form prior drops to simplify the rigging and preclude some of the hose

and PMA complications experienced earlier.

Besides the improved ease of rigging and aesthetic value, the new prototype

improved upon some operating parameters that had an impact on control logic. Details of

the improvements are in reference 9. The original G-12 prototype used high pressure

tanks to inflate the PMAs. This provided rapid fill times at the beginning of the drop and

decreased fill times towards the end, which in the refined system would require a control

algorithm variable to tank pressure remaining. More importantly the initial high fill rates

would cause the residual gas in the PMAs to produce adiabatic heating near the top of the

muscle during subsequent fills, which over time damaged the PMA liners. The new

system has a high-pressure regulated system with an accumulator. This system allows for

50

more constant fill times, approx. 5 sec, over the duration of the drop. The new system

also has an increased volume of inert gas providing up to 32 actuations per drop vice the

14 experienced by the first G-12 demonstrator. When simulations were run for drops

from 20,000 feet the system experienced an average of 28 actuations for wind profiles

from 1 to 10 hours time late. This increased reservoir improves the flexibility for

deployment of AGAS. The current control logic limits actuations, once the package

acquires the trajectory, until the radial error exceeds the preset value.

Figure 3.13 Serial/Autonomous AGAS package rigged for deployment

Figure 3.14 Serial/Autonomous AGAS package open and top views

51

The improved overall system performance of the new package is primarily due to

the lessons learned on first G-12 demonstrator. Initially, for the ground control station

the transition was simply a new means of transmitting the commands using the same

algorithms. As there was little success completing a drop with the original system the

algorithms had yet to be validated or refuted.

In the PCM control if the optically isolated switch received the proper PWM

signal it would vent or fill. In the serial control scheme the onboard package has

interlocks to preclude execution of a ground station generated command. Two such

interlocks are an initial time delay after deployment from aircraft for package to get under

canopy prior to inflation of PMAs. In the PCM controller this was done manually. The

other interlock precludes state changes until a preset time has elapsed from the prior

command of state change. The value of this was twofold; first the PMAs require 5

seconds to inflate and/or vent and a delay allows a state to be achieved. Secondly,

assuming the parachute is rotating, a significant enough delay will compensate for the

deviations in the stability of heading data as the body error angle passes across the

operating angle threshold and would minimize “chatter.” Initial drops had the state

change delay set at 10 seconds.

52

CARP

Parachute

Y_ltp (ft)

150010005000-500-1000 2000

X_
ltp

 (f
t)

0

-1000

-2000

-3000

-4000

-5000

-6000

1000

Z_ltp (ft)

80006000400020000-2000 10000

Er
ro

r v
s

CA
RP

 (f
t)

1200

1000

800

600

400

200

0

1400

Y_ltp (ft)

150010005000-500-1000 2000

-Z
_l

tp
 (f

t)

8000

6000

4000

2000

0

-2000

10000

26 June 200109:02:00

Figure 3.15 26 June 2001 Trajectory Data

Figure 3.15 shows the results of the first drop using serial control. The release

was within 300 feet of the release point predicted by the CARP program on the ground

station. The release delay was intentionally set high for this first drop for safety reasons

until performance of the new platform was verified. As noted in Figure 3.15 all PMAs

were vented until below 8,000 feet {Please note the change in data presentation. In PCM

uplink control a vent was 1 and a fill was zero. From here on a fill is 1 and a vent is

zero}. This accounts for the drift from near the trajectory to an offset of 1200’. Once

drive was initiated the package acquired the desired trajectory. The 10 second state

change delay proved to be a significant detriment in this drop. Under drive the package

has a velocity of approx. 15 ft/sec. In the worse case the parachute could drive 150 feet

linearly before the countering command could be executed. As seen in both Error vs.

CARP in fig 3.15 and Body Error Angle in fig 3.16, at around 3,800’, 2,300’ and 1,700’

the payload flew through the desired trajectory. With the delay, the package oscillated

53

about the trajectory vice stabilizing on track. Close to the ground the surface winds

exceeded the control authority of the AGAS.

80006000400020000 10000

PM
A1

0

1

Controls Data

Pressure

80006000400020000 10000
0

1

Pressure

80006000400020000 10000
0

1

Pressure

80006000400020000 10000
0

1

Pressure

Time (sec)

80006000400020000 10000

Er
ro

r A
ng

le
 (d

eg
)

0

-100

100

26 Jun 200109:20:02

Figure 3.16 26 June 2001 Control Data

8 0 0 06 0 0 04 0 0 02 0 0 00 1 0 0 0 0

3 0 0

2 0 0

1 0 0

0

4 0 0

Figure 3.17 26 June 2001 Heading Data

In anticipation of the complete system with the Dropsonde winds and Draper labs

trajectory, all trajectories are being computed on the ground station using the NPS point

mass model and winds that are at a minimum 2-hours time late. The final miss distance

was 450’. Although greater than the 300’ threshold CEP it is not significantly better than

the >1,000’ miss average experienced with the first prototype.Prior to the next drop we

54

decreased the opening delay and decreased the state change delay to 5 seconds to account

and allow for fills and vents.

Figure 3.17 shows that the package did not rotate and basically oscillated about

360 degrees during the last 4,000 feet and the increased delay in state change was

predicated on a rotating platform.

Figure 3.18 26 July 2001 Trajectory Data

Figure 3.18 represents the attributes and capabilities of this system and

demonstrates the GNC properties of the serial control. This is not the most accurrate drop

in terms of proximity to the target. The significance is the difference between the

controlled drop and the uncontrolled drop (blue and red respectively in figs 3.18 and

3.19).

55

Figure 3.19 26 July 2001 “God’s Eye” Trajectory Data

The radial error of the uncontrolled Windpak package (see Reference 3) was

about 1,900’ compared to the 318’ measured miss of the AGAS package. Both packages

are released near simultaneously from the same delivery platform. AGAS with it’s drive

capability was able to reach it’s desired trajectory within the first 5,000’ feet of descent

even though it was dropped over ¾ of a kilometer off desired trajectory. This

demonstrates some potential for one airlifter to fly between two drop zones and deploy

cargo on a single pass to two separate trajectories.

In Figure 3.20 the blue lines represent the actual pressure of the PMAs, if > 80psi

then a 1, else 0. The green line is the state the onboard package is commanding after

validating uplink and interlocks. The red line represents the command the ground station

is transmitting.

56

Figure 3.20 26 July 2001 Control Data

At 10,000 feet the package deploys and tumbles as it stabilizes under

canopy. The ground station is transmitting commands in accordance with the heading

and position data received. The onboard logic is disregarding them until the deploy time

interlock expires at approx 9,200’ and a 10 second all fill command is executed. PMA 2

pressure never exceeds the 80 psi threshold to indicate it filled prior to the command to

vent from the ground station is allowed to execute.

This highlighted a discrepancy in the new system that is being addressed

and corrected by Vertigo engineers. The pressure accumulator feed line in too small to

accommodate an all four fill command within the desired time.

From 9,000 to 5,400 feet PMAs 1 and 4 were filled, PMA2 was

predominantly vented, and PMA3 fluctuated between fill and vent as the body error angle

57

oscillated. Near 5,400 feet the package entered the inner cone (see fig 3.21) and all four

PMA’s were commanded to fill. At 4,300 feet the package exceeded the outer radius and

2 and 3 were commanded to vent again.

Figure 3.21 26 July 2001 Radial Error with Wind Data

This action repeats with all fill at 3,200 feet and 2 & 3 vent again at 2,200 feet.

This action with little rotation is indicative of the parachute fighting a constant adverse

wind each time it reaches the inner cone it drifts away from the trajectory again.

As seen in the wind profiles (red in fig 3.21, scale on right), below 1500 feet the

wind changes considerably and this time as the parachute drives towards the trajectory it

captures it and then passes through, denoted by the 180 degree change in body error angle

at 500’ in Figure 3.20. There is insufficient altitude left to overcome the wind change to

reacquire the trajectory. The average radial miss of the last four serial controlled drops is

255’. Thus control algorithm is ready for implementation in an autonomous package.

58

E. AUTONOMOUS CONTROLLER
The hardware used for the autonomous control was built package built by CiBola

Information Systems. The navigation portion is the same as used in PCM control of

AGAS. This system evolved into the Serial control package, and now will incorporate

the guidance and command logic that was resident in the ground station.

The autocode function in the RFTPS described earlier generated our draft C-code.

The current AGAS code for serial control has a significant amount of unessential data

inputs, outputs and processes that help with understanding and analyzing the data but do

not influence the decision algorithm. So, first the ground station model/algorithms were

reduced to the minimum for control. (Figure 3.22)

xLTP_ft

yLTP_ft

zLTP_ft

Heading_rad

Desired_N_ltp

Desired_E_ltp0.2

SUPER

BLOCK

3
SerData

1 SerHeadingDeg

2 Desired_N_LTP

3 Desired_E_LTP

4 SerLatDeg

5 SerLonDeg

6 SerAlt_m

PMA1_on_off

PMA2_on_off

PMA3_on_off

PMA4_on_off0.2

SUPER

BLOCK

4
Controller

1xLTP_ft

2yLTP_ft

3zLTP_ft

5Desired_N_ltp

6Desired_E_ltp

4Heading_rad

1

2

3

4

Figure 3.22 Model for autonomous control C-code.

The 30 inputs and 43 outputs of Figure 3.12, Serial Control Model, have been

reduced to 6 inputs and 4 outputs. These four outputs are actually reduced to one integer

output, which is a decimal representative of the binary PMA command in accordance

with the ICD. The operation inside SerData is similar to that depicted in Figs 3.5 and 3.6.

The block script is significantly simpler and in the autonomous model is called

59

“data_preprocessing”. Figure 3.23 is the new Controller SuperBlock for autonomous

code generation

2
2 yLTP_ft

5
Desired_E_ltp

12
4

Desired_N_ltp

1
xLTP_ft Y = U< -0.3

16
2Normalized X

Y = U>0.3
15

2Normalized X

Y = U>0.3
4

3Normalized Y

Y = U< -0.3
14

3Normalized Y

STATE
DIAGRAM

1
Tolerance

1

outercone

inputs: u;
outputs: y;

float u, y;

if u>8000 then
 y=500;
elseif u>6000 then
 y=400;
elseif u>4000 then
 y=300;
elseif u>2000 then
 y=150;
else
 y=100;
endif;

33
OuterCone

3 zLTP_ft

PMA1_on_offY = U1 and U2
27actuate PMA 1

PMA2_on_off
Y = U1 and U2

17actuate PMA 2

PMA4_on_off
Y = U1 and U2

18actuate PMA 4

PMA3_on_off
Y = U1 and U2

26actuate PMA 3

radial error

Normalized X

Normalized Y
0.2

SUPER

BLOCK

23
Errors_in_Body

6
Heading_rad

1

2

4

3

Figure 3.23 new Controller SuperBlock for autonomous code generation

Using the RFTPS procedures outlined earlier, the RealSim® system generated an

autonomous code. The problem is that the Auto-code includes all the subroutines and

functions to run in the RealSim® /AC-104 environment and is 1800 lines of

undocumented code and 54 Kbytes large. Through manual manipulation of the code it

was successfully reduced to a manageable and reradable 483 lines of fully documented

code and only 16.5 Kbytes large. The reduced code “AGAS_GNC.C” and

“AGAS_GNC.H” are attached in Appendix D.

Figure 3.24 is a simplified flow chart of the autonomous code architecture. The

code has six global variables. The radius of the inner cone, the radius of the base of the

outer cone, HalfCosOpAngle which determines the operating angle, and the Latitude/

Longitude/ Altitude of the DZ. The first three are preset and can be defined in the config

60

file. Latitude/ Longitude/ Altitude of the DZ are loaded into the package prior to

deployment IAW the “Draper to AGAS ICD” (Appendix E).

GNC(Heading, HAE, Lat, Lon, Desired_N_LTP, Desired_E_LTP)

Ser_Data

data_preprocessing

ltp_coordinates

Data
Structures

Controller

Errors_in_Body

U2B

Tolerance

PMACMD

Data
Structures

Outercone

Figure 3.24 Flow chart for autonomous guidance code

61

The onboard processor calls a function GNC. This function requires six variables

that coincide with the six inputs to Figure 3.22. Heading is pre-corrected for local

Magnetic Variation, Latitude and longitude of the package are in degrees, HAE is in

meters, and desired trajectory points for the given altitude are IAW ICD in App. E.

GNC calls a function “Ser_Data”. This function calls “data-preprocessing which

converts the data to proper units. The block “ltp_coordinates” executes equations 3.1-3.4.

Data is stored in structures and pointers are used for data calls.

The GNC function then calls the Controller function. Errors in body (xbody and

ybody) are determined by the Euler angle transformation in the U2B function discussed

earlier. Radial error with respect to desired trajectory is processed through the tolerance

function to determine position in space relative to the inner and outer cones. If position

in space warrants activation, the value of the norm of xbody and ybody are compared to the

HalfCosOpAngle value to determine which PMA should be actuated. Finally the PMA

states are processed through a switch to determine the decimal equivalent output of the

binary byte that represents the proper PMA command. This is the integer PMACMD

returned to the function call routine.

This synopsis of six pages of C-code is obviously simplistic. The code is fairly

well documented and those so inclined should be able to obtain answers to specific

questions in appendix D.

1. Control Analysis of Autonomous System.

Six successful autonomous drops have been accomplished to date. The first drop

data is depicted in Figures 3.26 and 3.27. The miss distance was 500 feet. In analysis,

the actual wind was not that significantly different in magnitude from the predicted (Bold

red line in Figure 3.25) during the terminal phase, and the drive available should have

kept the parachute on track. However, the body error angle oscillations during the last

2,000 feet of descent were right about the threshold for PMA 4 producing “chattering”.

In this last minute of drop PMA 4 cycled ten times. This cycling action must have

produced some forces to dampen out the drive of PMA 3.

62

Figure 3.25 06 Aug 2001 Radial Error

Figure 3.26 06 Aug 2001 Command Data

63

In chapter 4 we investigate control options to reduce this undesirable

phenomenon. The second drop using autonomous guidance produced great results with

the package landing within the threshold CEP of 300’. Figure 3.27 shows the Radial

error of this drop.

Figure 3.27 14 Aug 2001 Radial Error Data

Although the vector magnitude of the wind exceeded design specifications this

package, that was dropped 1500 feet from ideal release point, navigated to the desired

trajectory and maintained good tracking.

64

Figure 3.28 30 Aug 2001 Trajectory Data

Figure 3.29 30 Aug 2001 Radial Error Data

65

 On 30 August 2001 we dropped AGAS from 16,000 feet (Figures 3.28 and 3.29).

This is the first attempt from greater than 10k feet altitude. We wanted 18,000 feet AGL

but the winds had the release point outside the available airspace for this evolution.

The system to load the desired trajectory into the AGAS packages was

unavailable this week, so an endeavor to load the trajectory from a ground station was

attempted. Regrettably the trajectory loaded was interpolated linearly from the computed

release to the Drop Zone point but did not detract from evaluation of the controllability of

AGAS.

Two autonomous AGAS G-12/1,700 lb packages and one standard G-12/1,700 lb

package were dropped on the same pass from over 3 km from the Computed Air Release

Point (CARP). The AGAS packages guided to and intercepted the preplanned trajectory

and hit the DZ within 40’ and 150’ respectively. The uncontrolled standard G-12 missed

the DZ by 0.67 km. The two plots below depict the trajectory and the radial error from

the desired trajectory of the AGAS packages. The Uncontrolled package was not

instrumented and therefore not depicted.

Although, I did my research on AGAS because there was a deliverable platform

and we got to throw things out of airplanes, the backbone of this project is the RFTPS

and the model used in it. In the next chapter qualitative evaluations of control options to

better overcome adverse wind predictions and reduce body error angle oscillation that

induce chattering are investigated.

66

THIS PAGE INTENTIONALLY LEFT BLANK

67

IV. ASSIMILATE DT&E DATA BACK INTO THE MODEL

From the original algorithm a Computed Air Trajectory (CAT) was developed

and was utilized in most drops awaiting delivery of the final New World Vista trajectory

prediction system. This original algorithm, which ran the validating Monte Carlo

simulations, is the basis for our control logic. With actual drop data now available, the

trajectory prediction algorithms can be validated, and if the model can still prove valid,

one may evaluate alternative control schemes.

A. POINT MASS COMPUTED AIR TRAJECTORY AND CARP
VERIFICATION

From the 27 July 2001 drop, the WindPak (Reference 3) data was applied to our

CARP prediction algorithm (Figure 4.1).

Figure 4.1 Comparison of CARP/CAT to Trajectory Data

68

The WindPak provides position and velocity data from GPS information. The

velocity data is not a derivative of the position data but is computed by measuring the

Doppler shift in the carrier signal from a number of satellites. The only correlation to the

position data in the velocity determination is the static position of the receiver relative to

the satellites at time of velocity determination. This virtually non-correlative property

allows us to compare velocity and trajectory data to validate the CARP/CAT algorithm.

The WindPak velocity data input into the CARP/CAT algorithm provides the

predicted trajectory depicted in green (Figure 4.1). The blue plot is the trajectory of the

WindPak The red line is the position trajectory corrected for the difference from it’s

impact point to the DZ center.

The corrected trajectory overlays the predicted trajectory at almost every point.

The extension at the top of the trajectory accounts for deployment throw from the

aircraft. The point mass algorithm for uncontrolled trajectories appears valid.

B. MODEL PERFORMANCE CHANGES TO EMULATE ACTUAL DROP
PERFORMANCE

1. Logic Changes Incorporated During DT&E

a. Inner and Outer Cone

The original algorithms designed and built by Dellicker and Williams

provided the basis for our control logic. This logic was based on the following control

hypothesis. The control will continue until platform is within the inner cone nominal

flight profile (NFP) and then drift until outside the outer cone circular error probable

(CEP) seen in Figure 4.2

The drawback of these tolerance values was discovered in the drop of 26

June 2001 depicted in Figure 4.3. The response of the system was not sufficient to brake

the parachute within the inner NFP tolerance cone. This combined with an built in delay

to minimize chattering resulted in the package flying through the inner NFP and out the

CEP between 2,000 and 4,000 feet AGL. We increased the minimum diameter of the

inner cone to 100 feet for the rest of the drops

69

Figure 4.2 Tolerance Cone used in Original algorithm

CARP

Parachute

Y_ltp (ft)

150010005000-500-1000 2000

X_
ltp

 (f
t)

0

-1000

-2000

-3000

-4000

-5000

-6000

1000

Z_ltp (ft)

80006000400020000 10000

Er
ro

r v
s

CA
RP

 (f
t)

1200

1000

800

600

400

200

0

1400

Y_ltp (ft)

150010005000-500-1000 2000

-Z
_l

tp
 (f

t)

8000

6000

4000

2000

0

-2000

10000

26 June 200114:27:58

Figure 4.3 26 June 2001 drop data

Altitude

8000

6000

4000

2000

CEP = 500 ft radius

CEP = 400 ft radius

CEP = 300 ft radius

CEP = 150 ft radius

CEP = 60 ft radius

NFP = 30 ft radius

Ever-changing predicted path

Ground

70

To minimize actuation at higher altitude, in order to conserve inert gas in

the reservoir for low altitude maneuvering, the inner cone was increased from a constant

value to the equivalent of one-half the outer cone radius for the given altitude.

The outer and inner cone radius in the model was modified to emulate the

corrections to the package logic.

b. Fill and vent times/commands

The other DT&E change incorporated is the fill and vent times. To

preclude a commanded state change prior to a previous command achieving its state there

is a 5 sec delay between commands to allow fill and vents. The new model applied the

concept from chapter 2.G to compensate for fill times and vent times.

2. Logic Changes required due to observations during DT&E

a. Heading

Original algorithm incorporated an impulse that resulted in an

approximate two degree per second rotation rate. Most of the drops did not have a full

rotation and none of the drops that had a drive force applied rotated. However, due to a

combination of parachute coning and the response of the selected heading sensor there is

an oscillation in the heading of magnitudes up to ± 25° at approx 0.05 hz.

The rotational influence in the heading sensor in the algorithm was

removed and simulated this oscillation as a noise input was added.

b. Drive Force

The original algorithm empirically derived the drive forces in Eq 2.1 to

provide a glide ratio of 0.2 with 2 PMAs vented and 0.4 with 1 PMA vented. These

original estimations were observed during tests of the C-9 parachute. The G-12 canopy

experiencing the lengthening of two adjacent risers by 5.5’ each produced approx. 0.6

glide ratio and by lengthening only one riser five and a half feet the glide ratio improved

to 0.8.

71

.
1

11 ,.

22 ,
.

33

0 0 0
0 0 0
0 0 0

control x
D

G control y
T

T G W

u m u F
qC SV v m v F
V

m w Ww

V V V

α
α

α

−

 +
 − = = + + +

 +

= +

&

To account for this change the FcontrolX and FcontrolY values in above

equation were empirically manipulated to produce the observed glide ratios. In future

drops an instrumented package with an inertial unit could refine this algorithm.

3. Results of Simulation Improvements

Figure 4.4 shows the trajectory and radial error of the 27 July 2001 drop at Yuma

Proving grounds. Figure 4.5 shows the trajectory and radial error from a simulation

running the original algorithms employing the predicted and actual wind profiles from the

drop of 27 July 2001. Figure 4.6 shows the trajectory and radial error from a simulation

running the algorithm corrected for DT&E results and employing the predicted and actual

wind profiles from the drop of 27 July 2001.

In the actual drop the package missed the DZ by 367 feet. Running the original

algorithm with the predicted and measured wind profiles produced a miss distance of 588

feet. Although this number is not significant to thwart use of these algorithms for G-12

simulations the trajectory the original algorithm flew to acquire this miss distance

precludes use of this algorithm for G-12 simulations.

Executing the corrected algorithm with the predicted and measured wind profiles

produced a miss distance of 325 feet. This number is not sufficient to validate use of this

algorithm for G-12 simulations, but the trajectory the corrected algorithm flew to acquire

this miss distance is similar enough to consider use of this algorithm for G-12

simulations.

72

Figure 4.4 27 July 2001 drop data

25002000150010005000-500 3000

0

-500

-1000

-1500

-2000

-2500

500
2D Trajectory Overhead View

CARP Trajectory
Vehicle Trajectory

 Z_ltp (ft)
1000080006000400020000 12000

Ra
di

al
 E

rro
r (

ft)

1500

1000

500

0

2000

Figure 4.5 Simulation on Original algorithm with 27 July 2001 winds

East LTP
25002000150010005000 3000

No
rth

 L
TP

0

-500

-1000

-1500

-2000

-2500

500
2D Trajectory Overhead View

CARP Trajectory
Vehicle Trajectory

 Z_ltp (ft)
80006000400020000 10000

Ra
di

al
 E

rro
r (

ft)

1500

1000

500

0

2000

Figure 4.6 Simulation on Corrected algorithm with 27 July 2001 winds

73

Original Model
8 Actuations

80006000400020000 10000

PM
A1

150

100

50

0

200
Controls Data Pressure

80006000400020000 10000

PM
A1

150

100

50

0

200

80006000400020000 10000

PM
A1

150

100

50

0

200

ALt
80006000400020000 10000

PM
A1

150

100

50

0

200

80006000400020000 10000

PM
A1

150

100

50

0

200
Controls Data Pressure

80006000400020000 10000

PM
A1

150

100

50

0

200

80006000400020000 10000

PM
A1

150

100

50

0

200

ALt
80006000400020000 10000

PM
A1

150

100

50

0

200

Figure 4.7 Comparison of Control Actuations

Figure 4.7 compares the actual control actuations observed (upper left) to the

control commands of the original algorithm (upper right) and the corrected algorithm

(lower left). The original algorithm rotates at a fairly constant rate, therefore we get a

systematic cycling of PMAs and a minimal number of actuations as there is no chattering

about the actuation threshold. As the AGAS parachute does not rotate this further

disputes the original algorithm as providing valid and useful information. The corrected

algorithm does not have the same heading as the actual drop therefore the simulated Body

Error Angle will differ from the actual and so will the PMAs that are actuated. A

comparison of the upper and lower left hand plots indicate that the corrected algorithm is

more sensitive to the simulated heading oscillation and has more actuations than the

actual drop, 25 for simulation compared to 15 for actual.

With the similarities in trajectory and miss distance and the incorrect values for

number of activations one finds the corrected algorithm can provide qualitative but not

quantitative evaluations for improved logic schemes.

Actual Drop
15 Actuations

Original Algorithm
8 Actuations

Corrected Algorithm
25 Actuations

74

C. SUGGESTED CONTROL ALGORITHM IMPROVEMENTS

The improved logic schemes should attempt to decrease the number of actuation

by minimizing chattering and decrease the radial miss distance by providing an improved

response to adverse conditions.

1. Incorporation of Hysteresis
The incorporation of hysteresis into the control logic should help reduce the

chattering of PMAs induced by the oscillatory heading information. The concept

employs two operating angles instead of one. The inner angle for a given PMA will

command the vent. The larger angle will represent the threshold the operating angle must

cross to command a fill.

Vent

Fill

PMA
1

Bo
dy

 e
rro

r a
ng

le

Body Axis

Figure 4.8 Hysteresis concept as applies to PMA 1

Figure 4.8 depicts the concept of hysteresis for AGAS as it applies to PMA 1.

When the Body Error Angle is within either the red or green arc, a vent or fill command,

respectively, is given. As this vector angle passes through the blue (hysteresis angle)

region it continues to execute the previous command until it enters the next state. In this

discussion, 10° of hysteresis is the delta between the fill and vent states on one side.

75

80006000400020000 10000
PM

A1

150

100

50

0

200
Controls Data

80006000400020000 10000

PM
A2

150

100

50

0

200

80006000400020000 10000

PM
A3

150

100

50

0

200

ALt
80006000400020000 10000

150

100

50

0

200

Figure 4.9 Corrected controls (Blue) vs. Corrected w/ 10° Hys. (Red)

In Figure 4.7 we noted 25 actuations resulting in a 350 foot miss distance for the

corrected algorithm. Figure 4.9 shows control response for both the corrected algorithm

actuations and the corrected algorithm with 10° of hysteresis applied. With this

“improved algorithm” the actuations decreased to 19 and the miss distance decreased

insignificantly to 325 feet. Later we investigate the results from multiple runs.

Note that there are still are too many commanded actuations below 2,000 feet due

to operating angle chattering about the oscillating Body Error Angle.

2. Rate of Displacement from Trajectory

Currently the algorithm only effects a change if the package opening from the

desired trajectory exceeds the outer radius (CEP) set as the limit for that given altitude.

This is fine until the actual wind profile is significantly different than the predicted and

the package cannot respond to correct that radial error before running out of airspace

(altitude). When this condition exists one notes that the rate of change in radial error

from the desired trajectory is significant. There are two potential theories to employ a

rate threshold.

76

The first is to employ two thresholds to allow actuation of PMAs. The first being

the OuterCone threshold already discussed and the other allowing D(RadErr)/dt its own

threshold trigger for state change as shown in the state diagram of Figure 4.10. Where:

U1=radial error;

U2=OuterCone;

U3=D(RadErr)/dt;

U4=some D(RadErr)/dt threshold.

In this algorithm the inner cone is set at a constant value to best get the package

on the desired trajectory. The included ‘OR’ logic allows controlled actuations from the

drifting state when either the outer cone threshold is violated or the rate of radial error

from trajectory exceeds a preset limit. This limit is variable for different altitudes

allowing for more drift at higher altitudes and higher response at the low altitude end-

game.

State Diagram
Tolerance

Inputs
4

Outputs
1

SuperBubble
TOPLEVEL

Level
1

1

controlled1

controlled{U1>50}

1

controlled{U1>=U2 or U3>U4}

2

inside
NFP

2

inside NFP{U1<=50}

1 inside NFP{U1<=50}

3

drifting

2

drifting{U1>50}

2

drifting{U1<U2}

 Figure 4.10 State diagram of tolerance logic incorporating D(RadErr)/dt

77

The second scheme employs only one threshold which is a function of the

distance from the desires trajectory plus some gain times the D(RadErr)/dt.

()Allow Actuations IF;
D RadErr

RadErr K ValueX
dt

+ >

The use of D(RadErr)/dt with hysteresis logic resulted in 16 actuations and a 285

foot miss distance for this sample of one. In Figure 4.11 the blue is the corrected model

without any improvements. The green is the improved model incorporating hysteresis

and a radial error rate compensator.

80006000400020000 10000

PM
A1

150

100

50

0

200
Controls Data

80006000400020000 10000

PM
A2

150

100

50

0

200

80006000400020000 10000

PM
A3

150

100

50

0

200

ALt
80006000400020000 10000

PM
A4

150

100

50

0

200

Figure 4.11 Corrected model w/ 10° Hys. and D(RadErr)/dt

3. Multiple simulation runs
This one wind profile helped to provide direction on concepts to investigate.

Although only two schemes have been presented, there are others schemes and variations

on themes that were either not improvements or are still under investigation.

78

 Corrected Logic With 10° Hys 10° Hys and Dr/Dt

Run Time
late Miss (ft) # of

actuations Miss (ft) # of
actuations Miss (ft) # of

actuations
1 1 66.1671 13 149.475 10 49.4269 11
2 2 64.5432 24 73.5762 21 88.6144 19
3 3 135.556 22 133.813 18 51.3689 17
4 4 158.453 24 167.892 18 57.3228 11
5 1 13.4455 16 71.5019 14 33.7175 25
6 2 136.902 24 134.514 23 56.1606 21
7 3 179.781 20 124.293 16 76.3371 22
8 4 148.118 17 168.521 9 105.903 7
9 1 102.303 19 117.113 18 58.5714 13

10 2 151.286 20 151.734 16 67.2081 25
11 3 117.504 14 121.755 11 62.8329 17
12 4 85.7123 19 182.563 8 68.1101 8
13 1 90.5777 10 87.0514 10 86.463 23
14 2 140.906 22 138.741 18 74.3946 28
15 3 93.2199 15 84.44 16 57.8138 14
16 4 78.225 18 72.2613 13 68.391 18
17 1 125.69 16 127.415 13 53.632 31
18 2 119.23 18 95.9851 14 90.097 15
19 3 142.786 17 144.185 13 30.4988 21
20 4 66.0551 20 125.113 19 67.666 22
21 1 66.1033 14 66.3738 12 43.3635 16
22 2 95.5034 15 75.1618 13 50.9509 19
23 3 66.4823 17 96.1752 12 52.5068 18
24 4 579.558 16 572.119 13 612.889 5
25 1 91.5932 12 56.3036 11 73.3643 29
26 2 72.3189 15 60.6991 14 38.7846 25
27 3 154.07 17 153.206 14 77.4595 9
28 4 127.456 23 151.854 18 91.4601 16

Avg. 124 17.75 132 14.5 83 18
Table 4.1 Run table of logic alternatives

Using a collection of wind profiles collected at Yuma proving grounds at one

hour interval we ran 28 simulations with wind that were up to 4 hours time late from the

profile used for the CARP/CAT. The radial miss distance in feet and the number of

actuations and recorded in table 4.1 for each wind set run under; the corrected algorithm,

79

the model with hysteresis, and the algorithm with hysteresis and radial error rate

compensation.

Qualitatively, with hysteresis compensation only the average miss distance

increased by only 8% but the average number of actuations decreased by 20%. By

employing hysteresis and D(RadErr)/dt corrections in the logic the accuracy improved by

32% and the average number of actuations did not change from the improved algorithm.

Hysteresis will decrease number of actuations by eliminating some of the chatter

about the actuating threshold. Hysteresis alone does not appear to decrease the miss

distance. By effecting commands when the rate of radial error is large provides for a

more responsive system but does require additional actuations..

To minimize actuations only without marked change in accuracy a hysteresis only

application is suggested. To increase accuracy with the same quantity of actuations, a

hysteresis application with a radial error rate state function is suggested.

80

THIS PAGE INTENTIONALLY LEFT BLANK

81

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The Affordable Guided Airdrop System (AGAS) is a viable parachute structure

that integrates low-cost guidance and control into fielded cargo air delivery systems. The

Naval Postgraduate School RFTPS evaluated, validated, and where needed improved and

corrected the algorithms developed during the pioneering thesis research of this concept.

A RealSim® executable, based on the simulation model of Reference 4, ran on an

Integrated Systems, Incorporated (ISI) AC-104 real-time controller and integrated actual

Vertigo®, pneumatic muscle actuators (PMAs) into the simulation model.

Once commands to the control mechanism were validated the simulated

navigation devices of the model were replaced with a real-time serial input via an RF

modem RS-232 formatted downlink. The pulse code modulated uplink, which was

originally convenient due to hardware design, was also successfully replaced with an RF

modem uplink.

The RS-232 up/down links enabled convenient logic debugging of GNC

algorithms in a higher-level language prior to the transition to C-based execution of on-

board autonomous control. The RFTPS autocode function is not an economical code for

autonomous execution and an elementary background in C-programming is required to

modify the functions for autonomous operation.

The drop results improved throughout the Developmental Test and Evaluation.

One package released from 16,000 feet and over 3 kilometers off trajectory, actively

acquired the trajectory and landed within 40 feet of the DZ target. The other package

dropped alongside the aforementioned rig independently paralleled the first trajectory to

within 150 feet of where it was commanded to land. Both these loads were well within

the CEP of 100 meters.

82

With this test data in hand we then analyzed it again in the MATRIX_X® model

to improve the model and further qualitatively evaluate optional control strategies.

Findings are:

 •The current 3 DOF point mass software model provides a fairly accurate

estimation of parachute trajectory given valid wind profile

•The same model provides a qualitative resource for control logic improvement

•There exists improved logic schemes depending on requirement;

–Fuel conservation(Actuations)

–Accuracy (Miss Distance)

The title I wanted for this paper was “Beans and Bullets from 20,000 Feet”

because providing for our men and women in harms way is why I’m so passionate on this

project and spent two pages addressing the mission need. AGAS is “… responsive,

flexible, and precise.” Focused logistics by use of AGAS can deliver tailored logistic

packages and sustainment directly without landing the aircraft from altitudes up to at

least 20,000 feet affording increased survivability of the delivery platform and decreased

cycle time.

A. RECOMMENDATIONS

AGAS has proved it can provide a low-cost source of precision airdrop for loads

up to 2,000 lbs from altitudes of 20,000 feet. However, there is still sufficient research

required to increase the accuracy and decrease the cost.

1. Continue work on 6-DOF model currently underway at Purdue and NPS.

2. Instrument AGAS with Inertial unit to collect detailed performance and

Euler angle data for improvement of the current 3-DOF model and development of the 6-

DOF model to replace it.

3. Apply the trajectory seek concept developed with the round parachute to

Parafoil technology to procure a less expensive, stand off, Point of Use delivery platform

than currently available.

83

APPENDIX A INCORPORATION OF HARDWARE IN THE
LOOP

A. AGAS CONCEPT AND COMPONENTS

1. Concept

The current design concept includes implementation of commercial Global

Positioning System (GPS) receiver and a heading reference as the navigation sensors, a

guidance computer to determine and activate the desired control input, and the

application of Pneumatic Muscle Actuators (PMAs) to effect the control. The navigation

system and guidance computer will be secured to existing container delivery system

while the PMAs would be attached to each of four parachute risers and to the container.

Control is affected by lengthening a single or two adjacent actuators. The parachute

deforms creating an unsymmetrical shape, essentially shifting the center of pressure, and

providing a drive or slip condition. Upon deployment of the system from the aircraft, the

guidance computer would steer the system along a pre-planned trajectory. This concept

relies on the sufficient control authority to be produced to overcome errors in wind

estimation and the point of release of the system from the aircraft. Following subsections

discuss main AGAS components.

2. The components

a. The Parachute
Initial tests were on a C-9 Parachute with final test on G-12 parachute.

The data on these decelerators is listed in Table A.1.

Parameter C-9 G-12

0d (ft) 28 64

0/ dd P 0.67 0.67

Number of suspension lines 28 64

00 / dl 0.82 0.80

0DC 0.68 0.73

Parachute weight (lbs.) 11.3 130
Payload weight (lbs.) 200 2,200
Rate of descent (fps) 20 28

Table A.1 Parachute Data

84

b. The Pneumatic Muscle Actuators (PMAs)

Vertigo, Incorporated developed PMAs to effect the control inputs for this

system. The PMAs are braided fiber tubes with neoprene inner sleeves that can be

pressurized. Upon pressurization, the PMAs contract in length and expand in diameter.

With four independently controlled actuators, two of which can be

activated simultaneously, eight different control inputs can be affected. The concept

employed for the AGAS is to fully pressurize all actuators upon successful deployment of

the parachute. To affect control of the system, one or two actuators are depressurized.

This action “deforms” the parachute creating drive in the opposite direction of the control

action.

The C-9 PMAs are shown pressurized in Figure A.1. They change approx

3 feet in length from un-pressurized to pressurized. The PMAs for the G-12 parachute

are 24 ft in length and contract approx. 5.5 feet (dependant on fill pressure) when

individually supporting a 500 lb load.

Figure A.1 PMAs for 28 ft. C-9 parachute

c. The Inert Gas supply system
Figure A.2 shows a diagram of the actuator setup in the parachute payload

from a presentation by Vertigo, Incorporated, the makers of the PMAs. The gas for

filling the actuators comes from a 4500-psi reservoir. Each of the four actuators is then

connected to this same reservoir of nitrogen gas through some piping or tubing leading to

a fill valve. The fill valve is opened to allow gas to fill the actuators when a command

to take an actuation off is received. When the pressure inside the PMA reaches a certain

85

value, a pressure switch signals the fill valve to close. Figure A.3 shows some of the

plumbing for the gas in the actual prototype G-12 AGAS box.

Figure A.2 Inert gas supply and plumbing.

Since the fill valve works with high-pressure gas it has a small orifice and

therefore opens and closes rather quickly upon receiving the correct electrical signal. The

time to open and close the valve is roughly 100 ms

The vent valve opens to empty the actuator when a command to actuate is

received. The vent valve has a large orifice and can open quickly to vent the PMA, but

requires a certain time to vent the gas and close the orifice. Each opening of the vent

valve requires approximately 100 ms, but the venting process and closing of the valve

depends on the maximum pressure of the actuator fill (< 2 sec).

On the pressure line with the pressure switch is a separate pressure

transducer, this generates a current proportional to the pressure sensed.

86

Figure A.3 AGAS Box

d. Valve control
For initial DT&E tests control of the PMAs is effected through Futaba®

RC command signals. The receiver in the AGAS box is connected to the valve control

logic as shown in Figure A.4.

DSC

1

2

3

4

5

6

7

8

9/B

FUTABA
FP-R309DPS

1 8

3

1

PW relay
on >1500 µs

3

2

PW relay
on >1500 µs

3

7

PW relay
on >1500 µs

3

6

PW relay
on >1500 µs

3

8

PW relay
on >1500 µs

3

5

PW relay
on >1500 µs

PMA2

PMA1

PMA3

PMA4

Solenoid enable

Solenoid enable

Figure A.4 Futaba® receiver mapping in AGAS box

87

The transmitter is set up such that the right Joystick controlling J1

(normally aileron) and J2 (normally elevator) control PMAs 1-4. The settings for the

transmitter controller are as follows and depicted in Figure A.5:

• Elevator control ‘J2’

o PMA1

� Fill ≡center

� Actuated ≡up

o PMA3

� Fill ≡center

� Actuated ≡down

• Aileron control ‘J1’

o PMA2

� Fill ≡center

� Actuated ≡ right

o PMA4

� Fill ≡center

� Actuated ≡left

• Left, top forward Toggle (two position switch)

o Fill Solenoids enabled (via channel 5)

� Off ≡back

� On ≡forward

88

Figure A.5 Futaba® manual controller settings

This control scheme allows two PMAs to vent (actuate) with a single

control action. To vent PMA 1, move the joystick to the 12 o’clock position. To vent

PMA 2 move the joystick to the 3 o’clock position. To vent PMA 1 and 2 move the

joystick to the 1:30 position. Assigning channels 1 and 6 to J1 and channels 2 and 7 to J2

facilitates this control scheme, then inverting the sign for channels 6 and 7 from that of 1

and 2.

This setup also prevents the operator from accidentally actuating two

opposite PMAs such as 1 and 3.

B. HARDWARE IN THE LOOP (HITL) VERSION ZERO (HITLV0)

1. Concept

At the outset one needed to develop the interface between any model developed in

MATRIXX
®’s XMATH/SystemBuild® program and the control device for the AGAS

valve control box (AGAS box). This required the availability of the following features:

• A means to communicate the proper pulse width to the Futaba® receiver

system in the AGAS box.

• A means to read the signal from the Entran® pressure transducers in the

AGAS box.

PMA1
Chan 2

PMA2
Chan 1

PMA3
Chan 7

PMA4
Chan6

On-Off
Chan 5

89

• Feedback mechanism to ensure the desired command signal (pulse width

on desired channel) was properly transmitted.

The developers of MATRIXX®, WindRiver® (formerly Integrated Systems, Inc.),

produce a real-time controller system incorporating their RealSim® software and a PC

controller. The value of the RealSim® architecture resides in the capability to

automatically code an XMATH/SystemBuild® model, in which the parachute model

resides, to an executable C++ code for a PC controller. Although theoretically any PC

controller would do we use the WindRiver® AC-104 as our target to run the model. To

accommodate the above interface requirements we incorporate an Analogic® AIM16

analog to digital converter module (AIM16 A/D). a Diamond Systems, Inc., Ruby-MM

digital to analog converter module (Ruby D/A). and an SBS GreenSpring Modular I/O,

Industry Pack®-68332 data acquisition and control module (IP-68332) mounted on a

Flex/104A PC/104 carrier board by the same company.

The computer in which the XMATH/SystemBuild® model resides a Windows

NT/2000 personal computer which serves as the Host and the controller (AC-104) is the

target. A model is developed on the host in XMATH/SystemBuild® then auto-coded and

compiled in C++. On the host an interactive animation (IA) graphical user interface

(GUI) is developed and the connections from the IA to the controller are defined. This

code and interface architecture is downloaded and ran on the target controller. During

the run the host controller can send command signals to and receive data from the target

controller via the IA GUI but all code executions reside on the target. The execution of

and exit from a program on the target can be implemented without the host.

90

2. The Hardware for HITLv0

Master
FutabaController

Slave
FutabaController 9

5

AC104

LAN

AGAS

Futaba Rx
 Xducers

+Vcc
4

PMA3

PMA4

PMA2

PMA1

12Vdc

Futaba Monitor Rx

 Xducers

 Xducers

 Xducers

AIM 16 A to D

IP 68332

Ruby D to A

XDCR 'i' to 'v'

Matrix X
PC

Figure A.6 HITLv0 Overview

a. The Transmitter/ Receiver link
I have briefly mentioned the interface boards resident on the controller.

We will now look at the required hardware to facilitate control and feedback with the

AGAS box. Since we are maintaining the signal architecture of the AGAS box, namely

the Futaba® receiver and circuitry shown in Figure A.6.

For the PMA’s, when the received pulse width is greater than (or less than

for PMA1 on Channel 2 and Solenoid) the threshold of the sensor the relay closes and the

PMA inflates. Conversely a pulse width detected opposite the threshold the PMAs will

actuate (vent). Channels 5 or 8 provide redundant methods to allow the PMAs to fill.

Since the default command is fill the PMAs would fill upon powering up the system if

not for this logic interface. (Note. this pin out is different from the design by Vertigo

systems due to limitations on our Slave/Master Futaba controller scheme)

91

DSC

1

2

3

4

5

6

7

8

9/B

FUTABA
FP-R309DPS

1 8

3

1

PW relay
on >1500 µs

3

2

PW relay
on >1500 µs

3

7

PW relay
on >1500 µs

3

6

PW relay
on >1500 µs

3

8

PW relay
on >1500 µs

3

5

PW relay
on >1500 µs

PMA2

PMA1

PMA3

PMA4

Solenoid enable

Solenoid enable

Figure A.7 Futaba Receiver diagram w/ pulse width sensors

The ability to manipulate a Futaba controlled system from a RealSim®

workstation required a modification to the Naval Postgraduate School’s Rapid Flight Test

Prototyping System. The NPS RFTPS has been used successfully in conjunction with

FOG-R UAVs to support research and development of many NPS projects. The primary

modification came from transferring from the AC100/C30 controller and it’s modules to

the AC-104 controller and the modules previously mentioned. Unfortunately the

configuration of the Slave Futaba interface was not well documented which we will

rectify in this paper.

An airborne vehicle is controlled using two Futaba® transmitters, an FP-

8UAP and a PCM1024ZA. The FP controller in Figure A.8, referred to as the “slave”, is

modified to accept inputs from the Ruby-D/A via a DB-50 to DB-9 connector IAW Table

2. The outputs from the rheostat joysticks on FP-8 are disconnected and an input voltage

from the model is sensed in its place via hardwire links from the DB-9 connector. Due to

these hardwire ties the channels on the slave are not programmable and we are restricted

to using channels 1 through 4 for AC-104 control. This is why the pin-out for the

receiver in the AGAS box was changed from initial settings. The slave does not transmit

RF and therefore requires no RF module. All transmitted power is from the Master

controller, which is tied to the slave by a hard line data link cable (trainer cable). The

PCM

92

Futaba® trainer function is used to train novice pilots using a trainer cable. The Master in

this scenario has a trainer switch in which it can disable the slave and take control of the

platform.

SLAVE DB-9 Pin SCSI-50
Pin

Ruby-D/A

Vin Futaba
Chan 1

1 26 Ruby Vout
Chan 1

Vin Futaba
Chan 2

2 27 Ruby Vout
Chan 2

Vin Futaba
Chan 3

3 28 Ruby Vout
Chan 3

Vin Futaba
Chan 4

4 29 Ruby Vout
Chan 4

NOT USED 5 30 Ruby Vout
Chan 5

NOT USED 6 2 Ruby Grd
CH-2

NOT USED 7 3 Ruby Grd
CH-3

NOT USED 8 4 Ruby Grd
CH-4

Grdin
1 9 5 Ruby Grd

CH-5

1 all Grounds are common in the ruby and slave in this configuration; Only
one required

Table A.2 Pin-out for link from Ruby-D/A to “Slave” Futaba

93

Figure A.8 Master (left) and Slave (right) w/ gray DB-9 cable in side of slave and

black Trainer cable.

The primary functions of the Master Futaba are to transmit the commands

generated from the model via the Ruby A/D and the slave Futaba and to enable the fill

solenoids in the AGAS box.

The Master is programmed as follows:

• Current Model Name

o PARACHUTE 1

• Aileron control ‘J1’

o PMA2

� Fill ≡center

� Actuated ≡ right

• Elevator control ‘J2’

o PMA1

� Fill ≡center

� Actuated ≡up

• Throttle control ‘J3’

o PMA3

94

� Fill ≡down

� Actuated ≡up

• Rudder control ‘J4’

o PMA4

� Fill ≡center

� Actuated ≡right

• Toggle ‘SW (E)’ (left, top, fwd; two position switch)

o Trainer enable

o Solenoid enable (via channel 5)

� Disable both ≡back (2)

� Enable both ≡forward (1)

• Toggle ‘SW (G)’ (right, top, fwd; three position switch)

o Solenoid enable (via channel 8)

� Disable both ≡back (2) or center (0)

� Enable both ≡forward (1)

Figure A.9 Master Futaba Controls

For the XMATH/SystemBuild® model resident in the AC-104 to control

AGAS via the slave, the master needs to have the joysticks J1-J4 in the Fill positions and

the trainer switch engaged which will also enable the fill solenoids.

95

A secondary function of the master Futaba is to take over control and

manually control the actuators in case AC-104 controller commands are interrupted or

erroneous. By disabling the trainer switch, while leaving toggle ‘g’ forward to keep the

fill solenoids enabled, the parachute may be controlled with the joysticks J1-J4 in

accordance with the above control scheme.

b. The signal feedback link

To ensure that the desired command is transmitted we have incorporated a

second Futaba® receiver tuned to the same frequency as the AGAS box and transmitter to

read the pulse-width on the four actuator channels and channel 5 which also indicates the

position of the trainer switch.

DSC

1

2

3

4

5

6

7

8

9/B

FUTABA
FP-R309DPS

1 8

p1-Ground

p09-TPU ch07 (PMA1)
p10-TPU ch08 (PMA2)

p50-Ground

p2
/0

8

IP-68332
P3 on panel

p1
4/

49
 n

ul
l

DB-50

p1-grd

p09-Chan2
p10-Chan1
p11-Chan3
p12-Chan4

p50-null

p1
5/

49

p11-TPU ch09 (PMA3)

p13-TPU ch11 (Trainer Sw&Solenoid)
p12-TPU ch10(PMA4)

p14-TPU ch12 (Solenoid 0nly)
p13-Chan5
p14-Chan8

p2
/8

 n
ul

l

Figure A.10 Pin-out of monitoring Futaba receiver

The Futaba channels are mapped to the IP-68332 channels as follows;

2(PMA1) to 7, 1(PMA2) to 8, 3(PMA3) to 9, 4(PMA4) to 10, 5(trainer/solenoid enable)

to 11, and 8(solenoid enable) to 12 (not used), on AC-104 pins 9-14. The grounds are

tied to a common and mapped to IP-68332 pin 1. These channels on IP-68332 can

measure pulse width in microseconds. Figure A.11 shows the Futaba receiver on its

battery with the pins fed to the green breakout box behind.

96

Figure A.11 Futaba monitoring receiver

c. The pressure sensing link
Inside the AGAS box on each line between the valves and the PMA is an

Entran® EPO-W41-250P pressure sensor that, when in series with the proper voltage and

load, will produce a current output from 4-20 milli-amps corresponding linearly to 0 to

250 PSI sensed. These devices work over a voltage range of 10-30VDC and with a

30VDC source a load of 1KΩ provides for full 0-250 psi interpolation. To preclude

addition of another power source in the AGAS box our resistance is set at 300Ω to

accommodate the 12VDC sources available. This provides for linear operation over the

full pressure range of the PMAs.

 Power to (+12VDC) the transducers and voltage read (relative to PMA

press) are accommodated on the current to voltage board. This is the only hardwire

signal to or from the AGAS box in this controller scheme. As we will see, this

connection provides significant data in developing the model.

The voltage/pressure correlation is in accordance with Figure 13. The four

analog voltages are fed into the AIM16-A/D input module. A common ground is

attached to AC-104 pin1. PMA1 through PMA4 pressure voltages are connected

respectively to pins 2-5 on the AC-104 correlating to analog channels 1-4 in the AIM16.

97

R2 300

R4 300

R1 300

R3 300

p50-1-grd
p50-2-LR(PMA1)
p50-3-LF(PMA2)
p50-4-RF(PMA3)
p50-5-RR(PMA4)
p50-6-null

p5
0-

7/
49

 n
ul

l

p50-50-null

p10-1-VccLF
p10-2-VccRF

p10-3-VccLR
p10-4-VccRR

p10-5-null
p10-6-iRF
p10-7-iLR
p10-8-iRR

p10-9-iLF
p10-10-X

+1
2V

cc G
rd

S
pa

re

C1 12µ f

R5 1k
LED

PMA current to voltage

DB-9 to 10-pin

LF Xducer

RF Xducer

LR Xducer

RR Xducer DB-9
10-pin

50

p1-Analog ground
p2-Analog-In ch1
p3-Analog-In ch2
p4-Analog-In ch3
p5-Analog-In ch4

p5
0-

6/
49

 n
ul

l

p50-not connected

DB-50

p1-grd
p2-LR(PMA1)
p3-LF(PMA2)
p4-RF(PMA3)
p5-RR(PMA4)

p50-null

p6
/4

9

A IM 16 A/D
P1 on panel

PMA pressure
to current

Figure A.12 Pressure transducers through 300 ohm current to voltage board. Inset is

the current to voltage board connected to the AC-104

0 20 40 60 80 100 120 140 160 180 200
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5
Sensed Voltage vs Pressure

Pressure (PSI)

V
ol

ta
ge

 (
V

D
C

)

Figure A.13 Transducer Current and Sensed Voltage vs. Pressure

0 20 40 60 80 100 120 140 160 180 200
4

6

8

10

12

14

16

18
Transducer Current vs Pressure

Pressure (PSI)

C
ur

re
nt

 (
m

A
)

98

d. The AC-104

The AC-104 is a real-time hardware controller based on a small 8” by

5.75”, highly integrated PC motherboard that includes expansion connector for PC/104.

The system utilizes PC/104 I/O boards and SBS’s Industry Pack® modules mounted on

their Flex Boards. The front panel of the AC-104 as conFigured for this RFTPS is shown

in Figure 14

The AIM16 is in Port 1. The Ruby board is in Port 8. The Flex module 2

access that holds the IP-68332 board is through Port 3. There also exists current wiring

for another board on Flex module 1 through Port 6. This port will come into use for

serial communications in later versions of this model.

All I/O is on the face of the AC-104. Other ports used in HITLv0 include

an Ether-net port that can be addressed through a LAN or tied directly to a computer E-

net card with a special cable provided. The VGA monitor port provides a DOS display to

monitor controller operations. The PC keyboard port can execute resident programs and

purge old executable files when the Flash memory is full in order to provide room for

new executables. There are also status lights to indicate system problems.

99

Figure A.14 Front Panel of AC-104 controller

Figure A.15 The AC-104 conFigured for HITLv0; P1 is receiving pressure voltages, P3

is receiving Pulse width signals, and P8 is sending corresponding voltage commands to
the slave Futaba.

100

Figure A.15 is the hardware to the AC-104 controller for HITLv0. In the

right front of the Figure is the pressure sensing current to voltage board. It has a 12VDC

supply to the back, a ribbon cable to the left with the pressure representative voltages to

the 50 pin AIM16 connector on Port 1 (only 5 pins used), and a 9-pin ribbon to the right

from the AGAS box at the pressure representative current. Again, this is the only hard

connection to the AGS box in HITL. In the center front is the second Futaba® for signal

feedback link. The black receiver is on top of its 5v yellow battery power supply. The

wire out to the right is the antenna. Out to the left are the channel outputs to a green

breakout board connected as per Figure 10. The ribbon from the breakout board is

attached to the IP-68332 50-pin connector at Port 3. On the right side of the AC-104 the

Ruby 50-pin connector at Port 8 is sending analog commands to the slave Futaba® in

accordance with the pin-out in table 2. The orange cable is pinned-out to accommodate a

direct E-net card to E-net card connection between the host and target. The system will

also work between multiple hosts and targets via a router with standard LAN cables.

3. The Model for HITLv0

Discrete SuperBlock
HITLv0

Sample Period
0.1

Sample Skew
0.

Inputs
13

Outputs
13

Enable Signal
Parent

GroupId
0

1

2
passthrough

5
6

7

8
9

Limiter

4

1

13
dac

1

2

3

4

0.1

SUPER
BLOCK

14
PMA_VtoPSI

10

11

12

13

5
6

7

8
9

1

2

3

4

10

11

12

13

Figure A.16 Top Level SuperBlock for HITLv0

101

Models can be built in XMATH/SystemBuild® prior to executing RealSim®. For

our purposes we will assume we built the model prior to executing RealSim®.

Figure 16 depicts the inputs and outputs of the model. The Top level of the model

is a Superblock named HITLv0 “PMA_VtoPSI” is a lower level Superblock in HITLv0.

The DAC block in Figure 15 limits the Digital to analog voltage commands to preclude

out of range voltages from Ruby being applied to the slave Futaba®. The “passthrough”

is a unitary Gain block applied to the incoming pulse width measurements.

XMATH/SystemBuild® does not allow direct connections between inputs and outputs in

the model. The “PMA_VtoPSI” lower level SuperBlock converts the pressure

representative voltage signal input to a number signifying PMA pressure in PSI.

Discrete SuperBlock
PMA_VtoPSI

Sample Period
0.1

Sample Skew
0.

Inputs
4

Outputs
4

Enable Signal
Parent

GroupId
0

PMA1_psi = 52.08*(PMA1_press_volt

 - 1.2)

3

1

PMA2_psi = 52.08*(PMA2_press_volt
 - 1.2)

13

2

PMA3_psi = 52.08*(PMA3_press_volt

 - 1.2)

2

3

PMA4_psi = 52.08*(PMA4_press_volt
 - 1.2)

23

4

PMA1_filter_psiBlock
Script

4
Zero_Adj_1

PMA1_psi

PMA2_filter_psiBlock
Script

1
Zero_Adj_2

PMA2_psi

PMA3_filter_psiBlock
Script

5
Zero_Adj_3

PMA3_psi

PMA4_filter_psiBlock
Script

6
Zero_Adj_4

PMA4_psi

1

2

3

4

Figure A.17 PMA voltage to pressure (PMA_VtoPSI) SuperBlock

Figure 17 is the model within the “PMA_VtoPSI” SuperBlock. Each pressure-

represented voltage is processed through an algebraic block that multiplies the input less

the P0 voltage value by a constant. This output is in accordance with the Voltage vs.

Pressure plot in Figure 13. The block script, prior to the output, changes any pressure

reading less than 10 psi to read zero. This was done to eliminate chatter on the display,

but as we will see in the chapter on HITLv4 it prevented some valuable data collection.

To preclude naming problems later during execution it is recommended by this

author to name the top SuperBlock what you want to name the model.

102

4. RealSim® for HITLv0

The MATRIX-X software family includes several individual, yet related,

applications. Xmath is the computational element of the package, and SystemBuild

provides modeling and simulation functionality by using predefined and user-defined

functional blocks to model system elements. RealSim® provides functionality to

Autocode a model, compile and link the C++ code, build a user interface and define the

input and output connections. AutoCode is an application that generates C++ source

code from a SystemBuild model. An animation builder enables the user to build an

Interactive Animation (IA) Graphical User Interface (GUI) that allows real-time inputs

and monitoring of system parameters when the controller is running. The hardware

connection editor is used to designate connections between the I/O ports on the front of

the AC-104 and data paths within the code running on the controller. The RealSim

environment allows models developed in SystemBuild to be run in real-time, connecting

to real hardware for real-time simulation, rapid prototyping, and hardware-in-the-loop

modeling. The RealSim environment is managed using the GUI depicted in Figure 18.

Figure A.18 RealSim® GUI

103

The RealSim GUI provides a flow chart approach to the process of developing an

executable file to be run on the target controller. Once the left and right paths of the flow

chart are completed, the RealSim software on the host PC generates an executable code,

which is downloaded to the target controller via file transfer protocol (FTP). Detailed

instructions for building a new model are presented in section 3.6 of online

documentation. Detailed instructions for building a GUI for a new model using the

animation builder are presented in section 4.3, and the remaining steps reflected in the

RealSim GUI are presented in detail in chapter 5 of same reference.

5. The Interactive Animation (IA)
Figure 19 is the IA generated for this model. There are four sliders to assign the

voltage out to the slave controller. These are inputs to the model. Later versions use

buttons but sliders aid in the calibration of the system. The voltage out is a model

command transmitted to the Ruby board after the limiter (Figure 16). Under PMA

threshold are four “LED” type indicators that represent a fill or vent PW received by the

signal feedback link and IP-68332. Red for vent (actuate) and green for fill. The signal

from the IP-68332 is an input to the model at the "passthrough" block and the IA inputs

are outputs from the same block. The numbers below each ‘LED’ is pulse width

measurement in µsec for the respective PMA channel. The Bottom ‘LED’ depicts

Channel 5 and indicates whether the master is in the trainer mode therefore allowing

controller commands transmitted. To the right are redundant pressure indicators in gauge

and numeric representations. Due to the limitations of the pressure transducer and

conversion circuitry these numbers when vented would fluctuate about zero so the zero

adjust block script was added in Figure 17. The inputs to both these representations are

the outputs of the PMA_VtoPSI SuperBlock

104

Figure A.19 Interactive Animation GUI for HITLv0

6. Making the connections
The Hardware Connection Editor (HCE) allows mapping of input sourced and

output targets. For HITLv0 there are 13 inputs and 13 outputs. In Figure 20 the IA slider

bars provide inputs 1-4, the IP-68332 pulse width measurement circuitry provide inputs

5-9, and the AIM16-A/D pressure representative voltages provide inputs 10-13.

In Figure 21 outputs 1-4 provide the Ruby D/A digital commands to apply voltage

to the slave Futaba(R), and outputs 5-13 are not connected to hardware but provide signals

to the IA display.

105

Figure A.20 Hardware Connection Editor for Inputs

Figure A.21 Hardware Connection Editor for Outputs

7. The execution
With the executable running on the AC-104, all four of the PMAs were inflated

and deflated. The threshold pulse widths were calibrated. The voltages representing

PMA pressures were displayed on the controller GUI and corresponded well with

expected values and facilitated the setting of AGAS pressures. .

106

C. HITL VERSION ONE (HITLv1)

Discrete SuperBlock
HITLv1

Sample Period
0.1

Sample Skew
0.

Inputs
10

Outputs
56

Enable Signal
Parent

GroupId
0

Figure A.22 SuperBlock for HITLv1

1. The model
Prior NPS thesis studies by Scott Delicker and Ensign Tim Williams developed

the algorithms and coding of a Guidance, Navigation, and Control (GNC) model. Their

work culminated in the generation of a continuous model similar to that of Figure 21,

providing the trade-off studies to assess the affect of two crucial aspects of the parachute

control design: (1) a simulation comparing two control strategies at random wind

predictions and offsets from the ideal drop point, and (2) a comparison of simulations

using different actuator models to assess the affect of longer fill times. For this

discussion an understanding of the control strategy data is required.

The SystemBuild model described in ENS Williams’ work was utilized as a

model of the parachute, sensors, actuators, and control system. The two control strategies

107

are “Trajectory Seek” and “Target Seek”. In “Target Seek” the guidance is always

towards the center of the Drop Zone (DZ)

In “Trajectory Seek” the guidance system determines the error between the actual

position of the parachute and the nominal flight profile determined from ideal forecast

wind. This strategy is depicted in Figure 23.

N o m in a l F l ig h t P r o fi le (N F P) w ith n o co n tr o l
 (b e co m e s m o v in g w a yp o in t a s fu n c t io n o f a l titu d e

F e a s ib i l i ty F u n n e l
(a ir c r a ft d ro p s ch u te s w i th in fe as ib il ity b o u n d s)

T o p V iew

“ S id e” V ie w

• C h u te s s te e r T o N F P .
• T h en d r i ft u n ti l o u ts id e o f C E P .

i t

C E P
R eq u ir em e n t

G r o u n dS T E E R

D R I F T

S T E E R
S T E E R

D R I F T

S T E E R

Figure A.23 Trajectory Seek guidance Strategy.

 Figure 24 is a polar plot for the “trajectory-seek”. Each of the circular

rings in these polar plots represents 2,000 ft. The black stars in Figure 24 are the ideal

drop points. They are all east of the target point, which is consistent with the fact that all

the winds for the most part blow toward the west. The red dots are the actual release

points scattered around the ideal drop points. The blue triangles are where the controlled

parachutes landed. Most of the drops landed south of the target zone, which is consistent

with the wind changing from blowing toward the north to toward the south.

It may seem that many of the controlled parachutes fell outside the CEP, or ideal

circular area around the target of 100 meters. However, a closer look in Figure 25 shows

the DZ zoomed in on the CEP, with only the impact points of the controlled parachutes

plotted.

These Figures show that the density of impact points within the CEP was actually

high. Figure 26 is the statistics of the control errors (as well as errors for non-controlled

parachutes subjected to the same winds). It is assumed that this accuracy is due to the

108

majority of wind estimates being 2 or fewer hours old. The domain of the histogram is in

meters, with 100 m CEP being the goal of the parachute drops. For this set of

simulations, over 50% of the drops using “trajectory-seek” reached this goal.

Figure A.24 Trajectory Seek Release points and Landing points

Figure A.25 Expanded Plot of Trajectory Seek

109

Landing Miss Distance [m]
110010009008007006005004003002001000 1200

Fr
ac

tio
n

of
 S

am
pl

es
0.5

0.4

0.3

0.2

0.1

0

0.6
Control Strategy Trade Study

TARGETSEEK strategy

TRAJECTORYSEEK strategy

NOCONTROL strategy

Figure A.26 Control Strategy Trade Study

To determine a Computed Air Release Point (CARP) in the model the program

executes a No-Control (no PMA actuations) drop for a zero-hour wind and uses this as

the Nominal flight profile also often inappropriately referred to as the “CARP”. In this

paper we will refer to the release point as the CARP, and the nominal flight profile for a

given CARP as the Computed Air Trajectory (CAT).

Obviously the process to obtain the aforementioned data required a computation

of a CARP and a CAT for the selected zero-hour wind prior to computing the trajectory

seek data.

2. Incorporating the Inputs

a. Model requirements for Real Time operation
Figure 22 is the top-level block of HITv1. Figure 27 is the catalog of all

the SuperBlocks within HITLv1. An extensive amount of the model is exactly what ENS

Williams developed for his thesis. However to run in real time on a controller all the

Blocks had to change from a continuous environment to a discrete one. This required

two procedures, one, selecting discrete and a time interval for each SuperBlock and two,

ensuring all Laplace (S) transforms are changed to discrete (Z) transform. Figure 28

points out particular changes in the PMA model SuperBlock.

110

Figure A.27 Catalog of SuperBlocks within HITLv1

PMA1_pos_psi
PMA2_pos_psi
PMA3_pos_psi

PMA4_pos_psi
Limiter

%pma_max_pressures

0

4
actuator limit

1

2
3
4

1

2
3
4

1

s
X0= %pma_max_pressures

31
2

3
4Block

Script

12
Constant

Muscle Time

1

2
3
4

1
2
3
4

valve1_cmd_psi

valve2_cmd_psi
valve3_cmd_psi
valve4_cmd_psi

NS:4

STATE
SPACE

2
Valve Dynamics

1
PMA1_cmd_psi

2 PMA2_cmd_psi

3 PMA3_cmd_psi

4
PMA4_cmd_psi

Limiter

%pma_max_fill_rate

0

5
actuator limit
1
2

3
4

141
2

3
4

151
2
3
4

Discrete SuperBlock

v2 PMA Model
Sample Period

0.1
Sample Skew

0.
Inputs

4
Outputs

6
Enable Signal

Parent
GroupId

0

valve1_cmd_psi

valve2_cmd_psi
valve3_cmd_psi

valve4_cmd_psi
NS:4

STATE
SPACE

2
Valve Dynamics

PMA1_cmd_psi

PMA2_cmd_psi

PMA3_cmd_psi

PMA4_cmd_psi

Block

Script

12
Muscle Time Constant

1

2

3

4

1

2

3

4

(Tz)

(z-1)

X0= %pma_max_pressures

31

2

3

4

PMA1_pos_psi

PMA2_pos_psi

PMA3_pos_psi

PMA4_pos_psi Limiter

%pma_max_pressures

0

4
actuator limit

1

2

3

4

Limiter

%pma_max_fill_rate

0

5
actuator limit

1

2

3

4

141

2

3

4

151
2
3
4

Delta reservoirRead from

31

Y0= 0

-1
Z

61

2

3

4
PMA2_cmd_psiY = 175 -

 175*U

28

2 pma2_on_off

PMA1_cmd_psiY = 175 -
 175*U

99

1 pma1_on_off

PMA3_cmd_psiY = 175 -
175*U

98

3 pma3_on_off

1

2

3

4

Figure A.28 Component change in PMA Model SuperBlock from continuous model to

Real time discrete requirement.
b. Connecting the inputs to the Model
In Figure 20 we had 13 inputs to the HITLv0 model for AGAS control.

We shall now incorporate these inputs into the parachute control model.

111

The first four inputs in HITLv0 were the manual voltage control to the

slave Futaba®. Since we are incorporating the model to run autonomously these inputs

are deleted

The next five from Figure 20 are the pulse width measurements for the

signal feedback link. There is no use in the parachute model for this data as it is only to

give the operator a warm and fuzzy feeling in the IA that everything is going OK. As we

noted in HITLv0 one can not assign an in put to an output so there is a unitary gain block

placed in the top level of HITLv1. It is the “passthrough” block in the lower left corner

of Figure 22.

The last four inputs from Figure 20 are the heart of HITLv1. These are the

pressure representative voltages from the AIM16 A/D card. These inputs are applied to

pins 5-8 of block 93, “Real_PMA_Data”. This block along with switch 92 is new in the

model to incorporate the actual PMA pressure information.

Discrete SuperBlock
Vehicle Model

Sample Period
0.1

Sample Skew
0.

Inputs
9

Outputs
25

Enable Signal
Parent

GroupId
0

FxB_lb

FyB_lb

FzB_lb

MxB_ftlb

MyB_ftlb

MzB_ftlb0.1

SUPER

BLOCK

1
Aerodynamics

1
2
3

1
2
3
4

6

5

1

4

2

6

3

Read from
VARIABLE

vehicle_weight>Global<

2
vehicle_weight

acceler
body axi

1
2
3

PMA1_pos_psi

PMA2_pos_psi

PMA3_pos_psi

PMA4_pos_psi

fill_time_sec

reservoir_pressure_psi0.1

SUPER

BLOCK

3
New PMA model

1 pma1_on_off

2 pma2_on_off

3 pma3_on_off

4 pma4_on_off

PMA1_FutabaVolt
PMA2_FutabaVolt
PMA3_FutabaVolt
PMA4_FutabaVolt
PMA1_psi_adj
PMA2_psi_adj
PMA3_psi_adj
PMA4_psi_adj0.1

SUPER

BLOCK

93
Real_PMA_Data

1 pma1_on_off

2 pma2_on_off

3 pma3_on_off

4 pma4_on_off

5 AtoD_ch1

6 AtoD_ch2

7 AtoD_ch3

8 AtoD_ch4

u1

u2

u3

y

92
5
6
7
8

1
2
3
4

9

17

18

22
23
24
25

13

14

15

16

Figure A.29 Partial expanded view of Vehicle model

An additional input is the switch control signal for block 92 in order to

select model derived PMA pressure or real PMA pressure for determination of the

aerodynamic performance.

112

In the vehicle model, aerodynamic performance, or PMA induced motion

in flight, is determined by riser length, which has been derived as a function of PMA

pressure. In the original model a “pmaX_on_off” command was sent to the

“PMA_model” block that extrapolates the pressure out as a function of estimated

reservoir pressure remaining, and time. This output is fed to the “Aerodynamics

SuperBlock ”

In the modified model the signal is fed to “switch 92” which now controls

the logic feed to the “Aerodynamics SuperBlock ” through a selector on the IA display.

3. Integrating the Outputs
Figure 21 provides us with the outputs we used to control the AGAS box. We

still require an output control voltage to the slave Futaba® which is provided by the

“Real_PMA_Data” block. The vehicle model is already sensing “pmaX_on_off”

commands for the “PMA_model”. These signals are also sensed to at

“Real_PMA_Data” which converts them to a digital value representative of the voltage

desired from the Ruby D/A card out to the slave.

The pulse widths are provided at the ‘passthrough’ block in the top level.

Since we are not manually generating a Futaba® voltage commands the

PMAX_filtered signal outputs have been deleted.

There has also been added a manipulation of the data to provide PMA induced

velocity readings in the X and Y coordinate and the descent rate of the parachute

113

4. The Interactive Animation

Figure A.30 IA screen for HITLv1

The IA panel provides the following information during a run. Along the

top is altitude, PMA induced velocities, decent rate, and heading of the parachute in

radians. The left two plots display the Parachute position in the Local Tangent Plane

(LTP) and where its computed air trajectory (CAT) would have it for the given altitude.

The center of each plot is 0,0,0 in the LTP.

The area with the dials correspond, clockwise from lower left, to PMAs 1-

4 pressure in PSI, corresponding actuation voltage command and the corroborating

Futaba® signal feedback. Above these is the selector switch for choosing real or modeled

PMA data for aerodynamic analysis. The bottom light indicates that the Master Futaba®

has enabled the fill solenoids and is processing AC-104 commands via the slave.

[NOTE; Figure 30 is a null representation and not that of a executing program]

5. Program Execution
As we have discussed, in trajectory seek a CARP and CAT are required. To d o

this the CARP program is executed in XMATH as a continuous model using the chosen

zero-hour wind. The out put trajectory is saved and XMATH is closed. Then we invoke

RealSim®, load the HITLv1 model, load the predicted trajectories and code up the model

114

with the new wind variable defined in accordance with the steps depicted on the RealSim

GUI of Figure 18.

Figure A.31 SuperBlocks in the CARP model

D. HITL VERSION TWO (HITLV2).
Version two of Hardware in the Loop refines the coding and execution process for

simulations and was used in determining the fill times of the actual PMAs during test

runs at NPS.

1. Modifications

a. Programming and Coding

Initial modification incorporated the CARP and CAT calculation during

the loading of the RealSim® HITLv2 program. The catalogs of both CARP and HITLv1

were integrated into HITLv2 (Figure 32). From RealSim® one starts XMATH where the

sequenced execution of the code is facilitated by mathscript, “LoadHITLv2.ms.”

“LoadHITLv2.ms” calls “runsim_carpv2_points” where wind profiles can be selected

from the wind database.

115

Figure A.32 Catalog of SuperBlocks for HITLv2

“LoadHITLv2.ms”
1 #{ batchfile: This Batch file loads variables and generates

data
2 points for# CARP desired trajectory points
3 }#
4
5
6 load file = "c:\cpcprj\v4Variables\main.xmd";
7 load file = "c:\cpcprj\v4Variables\actuators.xmd";
8 load file = "c:\cpcprj\v4Variables\wind.xmd";
9
10 load file = "c:\cpcprj\HITLv2\HITLv2.dat";
11
12 execute file = "c:\cpcprj\HITLv2\runsim_carpv2_points.ms";

Lines 6-8 load the variables the model is looking for. Line 10 loads the

model which contains all the blocks in Figure 32. With CARP now resident in the

XMATH environment “runsim_carpv2_points.ms” can execute.

“runsim_carpv2_points.ms”
1 #{ batchfile: runsim_carp_points.ms Created 11/17/00
2 This batch file first runs the CARP predictor.
3 This batch file is also designed to create the predicted_x,
4 predicted_y,

116

5 and predicted_z row matrices that are plugged into the
predicted x

6 and predicted y linear interpolation blocks that are saved
for

7 autocoding and
8 compiling file for AC 104c operations
9
10 The outputs used are the predicted x and y
11
12 The Carp point is assumed as the 0x, 0y, -altitude point
13
14 The linear position init for simulated release is set here

to
15 account for release errors
16
17 Forcast wind is used for the CARPv2 for HITL data
18 newwind is used for the drop
19 }#
20 wind.newwind = wind.windlist(3);
21 wind.actual_alt = wind.newwind(:,1)';
22 wind.actual_x = wind.newwind(:,3)';
23 wind.actual_y = wind.newwind(:,2)';
24 wind.actual_z = wind.newwind(:,4)';
25 wind.forecastwind = wind.windlist(1);
26 wind.forecast_alt = wind.forecastwind(:,1)';
27 wind.forecast_x = wind.forecastwind(:,3)';
28 wind.forecast_y = wind.forecastwind(:,2)';
29 wind.forecast_z = wind.forecastwind(:,4)';
30
31 CARP_lin_pos_init = [0; 0; drop_alt];
32
33 q=sim("CARPv2", t, {ialg="VKM"});
34
35 pred_mat=makematrix(q,{channels});
36 predicted_x=pred_mat(:,1)';
37 predicted_y=pred_mat(:,2)';
38predicted_z=pred_mat(:,3)';
39
40 delete pred_mat;
41
42target_x=[predicted_x(length(predicted_x)),predicted_x(length(predicted

_x))];
44target_y=[predicted_y(length(predicted_y)),predicted_y(length(predicted

_y))];
45
46 linear_position_init = [750;-750; drop_alt];
47 pma_max_pressure = 150;

Line 20 selects the wind used in the execution of the controlled drop. Line

25 selects the wind used in the no-control CARP prediction and CAT generation run.

The zero-hour wind for CARP in this run is wind at time 1 which is the first wind profile.

The control drop wind will be influenced by the winds from profile three but track

towards the predicted trajectory of profile 1. Profile 2 is data collected one hour after

117

profile 1 and so on. Therefore the control drop is influenced by winds two hours later

than the profile is tracking towards. However, all profiles track to the same target. The

CARP in the model is defined as {0,0,release altitude} for the trajectory internal to the

calculation then this data is post-processed to a {0,0,0} target in the LTP when displayed.

Line 31 is where the drop altitude is input. In this case the altitude is already defined in

the variable set previously loaded. Line 46 uses the same release altitude but here

assumes a Cartesian miss of the release point by 750’ north and 750’west.

b. Display and Connections
Figure 33 is the improved display. The two plots on the left are replaced

by one, which tracks the difference between actual position and predicted position for the

given altitude. The center of the plot is the nominal flight profile point for the altitude.

The model is slightly modified to algebraically generate this data. Along the bottom are

strip charts of PMA pressure vs. time. The two numbers above the strip chart are model

predicted reservoir pressure (there is not a mechanism to digitally read real reservoir

pressure) and predicted fill time. This fill time is not indicative of real PMA fill times for

two reasons. The first will be explained in the next section and the second is that for

safety reasons at NPS we operated at pressures lower than the operational 4500 psi.

Note the delta position from actual to predicted position. The parachute is

to far right (+) in the ‘x’ axis and is inducing a (-) velocity in the ‘x’ axis. The ‘y’ axis is

behaving similarly.

118

Figure A.33 HITLv2 IA

2. Hardware Set-up
This model was run using three of the four G-12 PMAs set up in the basement of

Halligan hall at NPS. Figures 34 and 35 show the configuration.

Figure A.34 On the Left-PMAs 1 and 4 filled lifting 50 lb weights and PMA2 actuated.

PMA3 is missing and line is capped off; On the right- PMAs connected to the AGAS
box.

119

The bitter end of the PMAs near the AGAS box was fixed to the I-beam in the

background. The other end ran through a pulley to a 50 lb load. This load is far less than

the PMAs are capable of lifting and was only used for demonstration of action, to aid a

more complete actuation (venting), and to dampen fill response.

Figure 35 is the entire hardware set-up. Inside the shelf is the Host computer with

the IA displayed. On top are the master Futaba® with the slave behind it. The monitor on

top displays the status of the AC-104 controller. To the right on the small stand is the

AC-104 with the appropriate connections. The only hardwire between the AGAS box

and the control equipment is the 9-wire for pressure reading. Since we operated indoors

at a reduced tank pressure we kept the box connected to a tank of maximum 2000 psi to

minimize internal tank depletion during tests.

Figure A.35 AGAS testing of the Hardware for control verification.

120

3. Program Execution and Data collection

We ran the program simulating no control inputs for two hour time late wind data.

For simulated fills from the model for the same wind data. And for actual fills from the

configuration above of the real PMAs sensing real PMA pressures.

The No-Control drop missed the target by 1,500 feet.

The simulated pressures drop using low pressure fill times missed the target by 21

feet.

The HITL drop reading real PMA pressures missed the target by 130 feet. The

130’ miss is within the desired tolerance but the disparity between the simulated and real

misses required investigation.

On plotting the fill response we noted that in the simulation, even if we set the

model fill time constant high (remember the 30.38 sec in Figure 33), the simulation

would fill faster than the real PMAs utilizing HITL. Figure 36 shows the disparity of rise

time for the HITL readings (blue) and the model simulated fill times with high time

constants for the Four PMAs.

The strange non-vent in blue on PMA 1 at approx 35 sec is an intermittent partial

vent that we are investigating. On PMA3 one will note the fast real rise times. In that we

only had three operable PMAs, PMA3 was capped off therefore had a significantly

different response.

121

0 50 100 150 200 250 300 350
0

100

200

Time (sec)

0 50 100 150 200 250 300 350
0

100

200

Time (sec)

0 50 100 150 200 250 300 350
0

100

200

Time (sec)

0 50 100 150 200 250 300 350
0

100

200

Time (sec)
Figure A.36 PMA pressure simulated (red) and PMA pressure HITL (blue) vs. time.

The above disparity is investigated and corrected in HITLv4.

I know what you’re thinking! No, I am not leaving out the version that didn’t

work and hoping you wouldn’t notice. HITLv3 was a parallel project with HITLv2 that

incorporated a calibration setting but the need for that version was overcome by events.

E. HITL VERSION 4 (HITLV4)

1. The Problem

A closer look at the plots of Figure 36 reveals that the rise time for the simulated

runs in red are exponential in nature. Figure 37 is the SuperBlock that simulates PMA

response in the model. Block 12, the Muscle Time Constant” block script, determines the

fill response of the PMA. Below Figure 37 is the text of the script written by ENS

Williams.

122

Discrete SuperBlock
v2 PMA Model

Sample Period
0.1

Sample Skew
0.

Inputs
4

Outputs
6

Enable Signal
Parent

GroupId
0

valve1_cmd_psi

valve2_cmd_psi
valve3_cmd_psi

valve4_cmd_psi
NS:4

STATE
SPACE

2
Valve Dynamics

PMA1_cmd_psi

PMA2_cmd_psi

PMA3_cmd_psi

PMA4_cmd_psi

Block

Script

12
Muscle Time Constant
1

2

3

4

1

2

3

4

(Tz)

(z-1)

X0= %pma_max_pressures

31

2

3

4

reservoir_pressure_psi (Tz)

(z-1)

X0= %init_reservoir_press

1
Reservoir Pressure

PMA1_pos_psi

PMA2_pos_psi

PMA3_pos_psi

PMA4_pos_psi Limiter

%pma_max_pressures

0

4
actuator limit

1

2

3

4

Limiter

%pma_max_fill_rate

0

5
actuator limit

1

2

3
4

141

2

3
4

151
2
3
4

Linear

13
press vs press
Delta reservoir

fill_time_sec

Linear

23
reservoir pressure

Fill time vs

Read from
VARIABLE

deflate_time
>Global<

31

Y0= 0

-1
Z

61

2

3

4

Y0= 0

-1
Z

16

PMA2_cmd_psiY = 175 -
 175*U

28

2 pma2_on_off

PMA4_cmd_psiY = 175 -
 175*U

38

4 pma4_on_off

PMA1_cmd_psiY = 175 -
 175*U

99

1 pma1_on_off

PMA3_cmd_psiY = 175 -
 175*U

98

3 pma3_on_off

6

1

2

3

4

5

Figure A.37 PMA model for HITLv2 w/ block 12 highlighted

1 inputs: (x, signal, time_fill, deflate_time);
2 outputs:(xdot);
3 environment: (INIT);
4 parameters: pma_max_pressure;
5 float signal(4), x(4), xdot(4), k(4), e(4), time_fill, tau,
6 pma_max_pressure, deflate_time;
7
8 tau = time_fill/5;
9
10 for i=1:4 do
11 e(i) = signal(i) - x(i);
12
13 if (e(i) >= 0.0) then
14 k(i) = 1/tau;
15 else
16 k(i) = 1/(deflate_time/5);
17 endif;
18
19 if (x(i)<=0 & e(i)<0)|(x(i)>= pma_max_pressure & e(i)>0) then
20 xdot(i) = 0;
21 else
22 xdot(i) = k(i) * (signal(i) - x(i));
23 endif;
24
25 endfor;

In line 8 the fill time is divided by 5 to represent a time constant for the integrator.

From this we expect an exponential response in fill time. This is a valid assumption for

the beginning and end of the fill, but as HITL has demonstrated, the fill time vs. pressure

is predominantly linear (fig. 36). In essence the modeled pressure reaches approx 65%

of its max value in 20% of the fill time vice 65% of the fill time for a linear response. In

123

Figure 38 we find that at 150PSI setting, 65% of the pressure equates to 82% of the PMA

effective length which in turn represents approx. 82% of the driving force in the current

model.

Figure A.38 PMA Length Change vs. Pressure

This helps explain why the simulated model run is acquiring the target better than

the HITL runs. The model has the platform responding 5 times faster than the PMAs

actually respond.

2. The Fix
We want to keep the fill time script to model the beginning and end fill time

constants for determining length and reservoir depletion but, want the predominant

response to map linearly what the HITL fills demonstrate. In Figure 39 is the fix.

PMA Length Change vs Pressure

0

1

2

3

4

5

6

7

0 20 40 60 80 100 120 140 160 180 200

Pressure (psi)

D
is

pl
ac

em
en

t (
fe

et
)

Static measurements after
multiple inflations at 100, 150,
and 175 psi

Dynamic measurements from one
inflation to 175 psi (low resevoir pressure
so fill took approx 15 secs)

124

valve1_cmd_psi

valve2_cmd_psi

valve3_cmd_psi
valve4_cmd_psi

E
E

2
amics

Block

Script

12
Constant

Muscle Time

1

2
3

4

1
2

3

4

(Tz)

(z-1)

X0= %pma_max_pressures

31

2
3

4

reservoir_pressure_psi (Tz)
(z-1)

X0= 4500

1
Reservoir Pressure

PMA1_pos_psi

PMA2_pos_psi
PMA3_pos_psi
PMA4_pos_psi Limiter

%pma_max_pressures

0

4
actuator limit

1

2
3

4

Limiter

12

0

5
actuator limit
1

2
3

4

141

2
3

4

151
2
3
4

Linear

13
press vs press
Delta reservoir

fill_time_sec

Linear

23
reservoir pressure

Fill time vs

rom
LE
time
l<

31

Y0= 0

-1Z

61

2

3
4

Y0= 0

-1Z

16

Linear

96
Fill time limiter

Block
Script

97
linearizer
Fill time

1
2
3
4

6

1

2
3

4

5

Figure A.39 v4 Linearized PMA model

In the box is the addition to the model in Figure 37. First we provide a limit that

the fill rate cannot exceed. These are derived from the slopes of the HITL PMA fills of

Figure 36. The key in to determine which limit is supplied from block 23, which is the

experimental data of fill rate vs. reservoir pressure.

Since we want the initial and final response of the PMAs but only want to limit

the max rate, the time constants are passed through a block that implements the file

below. If rate exceeds the limit the limit is applied.

1 inputs: (xdot, limit);
2 outputs: xdot_limited;
3 parameters: Gain;
4 float xdot(4), limit, xdot_limited(4), hold, Gain;
5
6 for i=1:4 do
7 hold=xdot(i);
8 if xdot(i)>=limit then
9 hold=limit;
10 endif;
11 xdot_limited(i) = hold;

125

12 endfor;

3. The results
After running the simulation with the new limit the response of the New Model

PMAs (green) mirrored the response of the HITL (blue) in Figure 40. Only PMAs 2 and

4 are depicted due to the hang up of PMA 1 and cap of PMA3.

The step rise in the real PMA response is due to my masking of the pressure

variations from 0 to 10 PSI for HITLv0. As I have previously stated, “It came back to

haunt me.”

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
0

5 0

1 0 0

1 5 0

2 0 0

P
M

A
2

P
re

ss
ur

e

T im e (s e c)

P M A # 2 & # 4 F il ls

P re -H ITL s im re s p o n s e
R e a l P M A re s p o n s e
N e w M o d e l re s p o n s e

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 3 5 0
0

5 0

1 0 0

1 5 0

2 0 0

P
M

A
4

P
re

ss
ur

e

T im e (s e c)

Figure A.40 Fill time response for PMAs 2 and 4 before and after fill time limiter.

Figure 41 is an expanded view of the first fill data form PMA2. The pre-HITL

model response is clearly exponential. The new model response is linear and tapers off at

the end exponentially. The real PMA response has an overshoot then settles. This

attribute is very minor in the PMA is already near the maximum throw and the is virtually

no oscillation in length.

The final proof is in Figure 42. On running the simulation with the linearized

PMA model the final miss distance was 123 feet vice the 21 feet the previous model

provided and closer to the 130 feet the HITL results demonstrated

126

NOTE; All the aforementioned data was obtained at a lower reservoir pressures

than the system normally operates. The fill times are not representative of actual fill

times. The analysis is valid for the study and as more experimental data is acquired from

future drops the PMA linearization setting can be refined.

55 60 65 70 75 80 85
0

50

100

150

P
M

A
2

P
re

ss
ur

e

Time (sec)

PMA #2 First Fill

55.8 56 56.2 56.4 56.6 56.8 57
0

50

100

150

P
M

A
2

P
re

ss
ur

e

Time (sec)

Pre-HITL s im response
Real PMA response
New Model response

Figure A.41 Detailed fill time response of the first fill of PMA 2

127

Figure A.42 Fill response and miss distance after integrating fill time limiter

 128

F. INCORPORATING MODEL IN GROUND COMPONENT FOR CONTROL SYSTEM VERIFICATION

Discrete SuperBlock
PITLv0

Sample Period
0.1

Sample Skew
0.

Inputs
31

Outputs
48

Enable Signal
Parent

GroupId
0

Temp_C

Heading_Rad

Roll_Deg

Pitch_Deg

H_x

H_y

H_z

Time_GPS

Lat_Rad

Lon_rad

Alt_ft

GrdTrk_Rad

VelNorth_fps

NumbBytes

latitude0_Deg

longitude0_deg

altitude0_m_msl

xLTP_ft

yLTP_ft

zLTP_ft

VelEast_fps

VelUp_fps

Roll_Rad

Pitch_Rad

0.5

SUPER

BLOCK

3
sercom

1 SerTempC

2 SerHeadingDeg

3 SerRollDeg

4 SerPitchDeg

5 SerHx

6 SerialHy

7 SerialHz

8 SerTimeGPS

9 SerLatDeg

10 SerLonDeg

11 SerAlt_m

13 SerGrdTrkDeg

12 SerVelNorth

29 SerVelEast

30 SerVelUp

14 NumBytesRx

pma1_on_off

pma2_on_off

pma3_on_off

pma4_on_off

error X over norm X

error Y over norm Y

outercone

radial error

no_controls

Pred_Pos_x

Pred_Pos_y

z_positive

xLTPvs_xCARP

yLTPvs_yCARP

BodyErrAngle_Deg

0.5

SUPER

BLOCK

4
p0 Controller

18 xLTP_ft

19 yLTP_ft

20 zLTP_ft

23 Roll_Rad

24 Pitch_Rad

2 Heading_Rad

31 Target1_Traj0

PMA1_limited_command

PMA2_limited_command

PMA3_limited_command

PMA4_limited_command

pma1_pw

pma2_pw

pma3_pw

pma4_pw

Trainer_enable_pw

PMA1_filter_psi

PMA2_filter_psi

PMA3_filter_psi

PMA4_filter_psi

0.5

SUPER

BLOCK

2
HITLv0

15 Fut_V_Com1

16 Fut_V_Com2

17 Fut_V_Com3

18 Fut_V_Com4

19 PWM1_Rx

20 PWM2_Rx

21 PWM3_Rx

22 PWM4_Rx

23 PWM5_Rx

24 PMA1_press_volt

25 PMA2_press_volt

26 PMA3_press_volt

27 PMA4_press_volt

PMA1_FutabaVolt_out

PMA2_FutabaVolt_out

PMA3_FutabaVolt_out

PMA4_FutabaVolt_out

u1

u2

u3

y

15

1 PMA1_FutabaVolt

2 PMA2_FutabaVolt

3 PMA3_FutabaVolt

4 PMA4_FutabaVolt

1 PMA1_limited_command

2 PMA2_limited_command

3 PMA3_limited_command

4 PMA4_limited_command

28 Auto1_Man0_switch

PMA1_FutabaVolt

PMA2_FutabaVolt

PMA3_FutabaVolt

PMA4_FutabaVolt0.5

SUPER

BLOCK

6
PMA_Cmd2Volt

1pma1_on_off

2pma2_on_off

3pma3_on_off

4pma4_on_off

Heading_Deg

GrdTrk_deg
1

31
2 SerHeadingDeg

13 SerGrdTrkDeg

Lat_Deg

Lon_Deg

1

-1

1
9 SerLatDeg

10 SerLonDeg

1

3

4

5

6

7

8

9

10

11

12

14

15

16

17

18

19

20

42

43

25

26

27

28

29

30

31

32

46

47

48

33

34

35

36

37

38

39

40

41

21

22

23

24

2

13

44

45

Figure A.43 Overview of top SuperBlock for PITLv0

129

1. Concept and Overview

For the validation phase of AGAS demonstration a model called Parachute in the

Loop (PITL) is developed to communicate with and control the airborne package. For

this phase the guidance algorithms will be executed on the ground based computer

system (AC-104 and host). Measurements of the AGAS system state will be transmitted

from the Air platform to the ground via RF modem. System states will include position

and velocity derived from a twelve channel GPS at 2 Hz and heading information derived

from an electronic compass also at 2Hz. For the velocity of the platform and wind data

points available, 2Hz data rate provides ample gudence information for both control and

post processing. The ground computer will process state information and transmit

control commands via Futaba® Rc system currently in use. Evolution to an RF modem

uplink is in –work. These initial efforts are not expected to navigate a PMA controlled,

GPS guided parachute to within the CEP threshold desired. These initial efforts will

refine and define interface architecture between the controller and the actuators and

collect data to refine the G-12 parachute model for further studies and simulations. To

this end, there are 31 inputs in Figure 43, the top level SuperBlock for the controller and

communication model, PITLv0 (Figure 43). Additional data collected is processed and

stored in flash memory onboard the platform.

The control station (fig 44) employs the same hardware as in HITLv2 less the

AIM A/D. A cable connecting the pressure indicting voltage to the AC-104 is obviously

impractical and this port is not used. Pressure data though, is recorded on board the

package during these drops and time stamped for post mission analysis. Additional

equipment includes a serial communications card on the SBS GreenSpring Flex/104A

PC/104 carrier board accessed on the AC-104 at Port 6, A Freewave RF modem

connected to it, and a linear amplifier for the Master Futaba® to enhance control up to

10,000 feet for these drops.

The test package (fig 44) includes the AGAS box with all its inherent equipment

and PMAs depicted in Figure 34, one G-12 parachute, a GPS, a heading reference

system, a temperature sensor, the pressure sensing circuitry, on-board data processor and

storage, and an RS-232 capable Freewave® wireless data transceiver. The package is

130

only about a quarter of the payload. Honeycombed cardboard comprises the rest to

absorb the landing shock and limit instrumentation damage.

Figure A.44 AGAS control station and the AGAS package rigged for deployment

2. Communications

a. Uplink

The uplink to control the AGAS box is only an amplified version of that

described in HITLv0. A Futaba® transmitter module has been modified to port the

commanded signal out to a linear amplifier which connects to an antenna external to the

control room.

b. Downlink

Freewave® wireless data transceivers facilitate the data link of RS232

formatted information supplied by the data processor on-board the package. The current

Air-Ground ICD contains 90 bytes of data at 2 Hz, including sync and carriage return.

Included in the downlink is; heading (deg), temperature(C), pitch (deg), roll (deg), Hx,

Hy, Hz, Time (GPS), Latitude (deg), Longitude (deg), Ground Track (deg), and Velocity

in North, South and Up axis (m/s).

Linear Amp

131

3. SerCom

Discrete SuperBlock
sercom

Sample Period
0.5

Sample Skew
0.

Inputs
16

Outputs
24

Enable Signal
Parent

GroupId
0

latitude0_Deg

longitude0_deg

altitude0_m_msl

xLTP_m

yLTP_m

zLTP_m0.5

SUPER

BLOCK

2
LTP_coordinates

9 Lat_Rad

10 Lon_rad

11 Alt_m

Temp_C
Heading_Rad
Roll_Deg
Pitch_Deg
H_x
H_y
H_z
Time_GPS
Lat_Rad
Lon_rad
Alt_m
GrdTrk_Rad
VelNorth_fps
VelEast_fps
VelUp_fps
Roll_Rad
Pitch_Rad

Block

Script

1
Raw data preprocessing

1 SerTempC

2 SerHeadingDeg

3 SerRollDeg

4 SerPitchDeg

5 SerHx

6 SerialHy

7 SerialHz

8 SerTimeGPS

9 SerLatDeg

10 SerLonDeg

11 SerAlt_m

12 SerGrdTrkDeg

13 SerVelNorth

14 SerVelEast

15 SerVelUp

1

12
Bytes captured

Number of

16

Alt_ft

xLTP_ft

yLTP_ft

zLTP_ft

3.2808

3
m2ft

11Alt_m

4 xLTP_m

5 yLTP_m

6 zLTP_m

15

16

17

1
2
3
4
5
6
7
8
9
10

12
13
21
22
23
24

14

11

18

19

20

Figure A.45 “sercom” SuperBlock

The “sercom” SuperBlock (fig 45) processes the signal sorted and parsed from the

raw RS232 data by a C++ code written by Prof. Yakimenko at NPS and integrated in the

program code duing compilation. The inputs to the “Raw data preprocessing” block are

in the units in which they are transmitted by the AGAS system. These signals are

converted in “sercom” to the linear and angular unit base required for processing. The

model works in units of feet. The Euler transformations use meters and radians. So

altitude needs to be converted to meters. Lat., Lon. and heading to radians, etc.. In

addition, to limit the data bits required, most signals which could process a negative value

are biased so the transmission is positive (i.e. 10 degrees C is transmitted as 35 degrees

C) then the bias is removed in the block script. In short the “sercom” block is our secret

decoder ring.

“LTP coordinates” SuperBlock (Figure 46) has three inputs along with 3 internal

‘Read’ inputs from system variables. The Latitude, Longitude, and altitude of the target,

a pre-set global variable, is converted to an Earth-Centered Earth-Fixed (ECEF)

132

coordinate and used as the origin in the LTP. The Latitude, Longitude, and altitude of the

platform is provided by the serial input is converted to proper units and then converted to

ECEF coordinate itself. The difference of the target position and platform position is the

converted to the LTP to provide a distance in meters from the origin of the LTP (the

place this is supposed to hit).

Discrete SuperBlock
LTP_coordinates

Sample Period
0.5

Sample Skew
0.

Inputs
3

Outputs
6

Enable Signal
Parent

GroupId
0

Read from
VARIABLE
lon0

>Global<

1
longitude_0

Read from
VARIABLE
lat0

>Global<

2
latitude_0

Read from
VARIABLE
alt0

>Global<

3
altitude_0

x0ecef_m

y0ecef_m

z0ecef_m

Block
Script

10
ECEFs origin

latitude0_Deg

longitude0_deg

altitude0_m_msl

xecef_m

yecef_m

zecef_m

Block
Script

9
ECEF coordinates

1 x0ecef_m
2

y0ecef_m

3
z0ecef_m

1 Lat_Rad

2
Lon_rad

3 Alt_m

xLTP_m

yLTP_m

zLTP_m

Block
Script

4
LTP coordinates

1 xecef_m

2 yecef_m

3 zecef_m
latitude0_Deg
longitude0_deg

2

1

3

4

5

6

Figure A.46 “LTP_coordinates” SuperBlock

Prior to exiting the sercom block the position is changed to feet to correspond

with units used in the “p0 controller” block.

4. p0 controller

The “p0 controller” SuperBlock reads LTP position of the platform and translates

this to command signals for actuating the PMAs. The significant model modification

from that used in HITL versions is that two additional linear blocks are added to the x

and y axis respectively so that inflight the process can manually change between

trajectory seek and target seek. The other significant change is that heading, pitch and

roll are all now used. In previous models pitch and roll were set to zero.

133

Discrete SuperBlock
p0 Controller

Sample Period
0.5

Sample Skew
0.

Inputs
7

Outputs
15

Enable Signal
Parent

GroupId
0

Linear

3
target y
predicted

3 zLTP_ft

21 xLTP_ft

12

2 yLTP_ft

 321

y=T *u

13
Body Transform
Universal to

position error x

position error y

6 Heading_Rad

5 Pitch_Rad

4 Roll_Rad

radial errorY = (U1**2 + U2**2)**0.5
24

norm of input vector

1

2

error X over norm X

error Y over norm Y
Y1 = U1/U3
Y2 = U2/U3

251
2

Y = (U1>0.3 or U1<
 -0.3) and U2<0

161error X over norm X

1errX_in_Body

Y = (U1>0.3 or U1<
 -0.3) and U2>0

151error X over norm X

1errX_in_Body

Y = (U1>0.3 or U1<
 -0.3) and U2>0

42error Y over norm Y

2errY_in_Body

Y = (U1>0.3 or U1<
 -0.3) and U2<0

142error Y over norm Y

2errY_in_Body

Linear

5
target x
predicted

3 zLTP_ft

STATEDIAGRAM

1
Tolerance

outercone

inputs: u;
outputs: y;

float u, y;
if u>8000 then
 y=500;
elseif u>6000 then
 y=400;
elseif u>4000 then
 y=300;
elseif u>2000 then
 y=150;
else
 y=100;
endif;

33
OUTERCONE

z_positive

pma1_on_offY = U1 and U2
27actuate PMA 1

pma2_on_offY = U1 and U2
17actuate PMA 2

pma4_on_offY = U1 and U2
18actuate PMA 4

pma3_on_offY = U1 and U2
26actuate PMA 3

1
44

3 zLTP_ft no_controlsY = U1 + U2
 + U3 + U4

19
Total Control Actuations

Pred_Pos_x
u1

u2
u3

y

99
pos X target

pos X Trajectory

7 Target1_Traj0

Linear

6
trajectory x
predicted

3 zLTP_ft

Pred_Pos_y
u1

u2
u3

y

7
pos Y target

pos Y Trajectory

7 Target1_Traj0

Linear

8
trajectory y
predicted

3 zLTP_ft

xLTPvs_xCARP

yLTPvs_yCARP-1
9position error x

position error y

ARCTAN

372error Y over norm Y

1error X over norm X
BodyErrAngle_Deg57.296

49
Rad2Deg

BodyErrAngle_rad

8

5

6

7

1

2

4

3

12 9

10

11

13

14

15

Figure A.47 “p0 controller” superblock

5. The Remaining Blocks in PITLv0

a. HITLv0
This is the same block as used in model of the same name described

earlier. The pressure inputs were retained in case a serial link with pressure information

is later provided. This block allows for manual control of the package.

b. PMA_Cmd2VOLT

This block provides the desired voltage output to the Futabas® for the

commanded PMA action.

c. Logic Switch 15

Allows selection on the IA to operate the package with either

automatic/”p0 controller” commands and manual/”HITLv0” commands.

d. “Passthrough” Gain Blocks
These blocks provide data for display puposes in the original format

(units) then what is manipulated for transformation requirements.

134

THIS PAGE INTENTIONALLY LEFT BLANK

135

APPENDIX B AGAS CONTROL SYSTEM VALIDATION PHASE
AIR-GROUND/GROUND-AIR ICD

AGAS Control System Validation Phase
Air-Ground/Ground-Air ICD

This ICD defines the data interface between the airborne component and the ground component
of the control system validation phase of the AGAS demonstration. For this phase of the
demonstration, the guidance algorithms will be executed on a ground based computer system.
Measurements of the AGAS system state will be transmitted from the aircraft to the ground
computer via RF modems. The ground computer will process the measurements to compute
parachute control commands necessary to deliver the AGAS package to the desired coordinates.
The control commands computed by the ground station will be transmitted to the aircraft over the
modem system.

The AGAS system states will include position and velocity derived from a twelve channel GPS
receiver at a two Hz rate. Heading information will be derived from an electronic compass, also at
a two Hz rate.

The control commands will be transmitted from the ground station to the aircraft at a 1 Hz rate.

 The down link message parameters are defined in table 1. With respect to the order of
transmission, the least significant bit in each byte will be transmitted first and the most significant
byte of each multi-byte parameter will be transmitted first.

Byte
Number Parameter Data Type Scale Factor Units Notes

1 Sync Unsigned Char N/A N/A 1
2 Sync Unsigned Char N/A N/A 1
3 System ID Unsigned Char N/A N/A 11
4 Spare Unsigned Integer N/A N/A 2
5..6 Spare Unsigned Integer N/A N/A 2
7..8 Spare Unsigned Integer N/A N/A 2
9..10 Spare Unsigned Integer N/A N/A 2
11..12 Temp Unsigned Integer 10-1 °C 3
13..14 Heading Unsigned Integer 10-1 Degrees
15..16 Roll Unsigned Integer 10-1 Degrees 4
17..18 Pitch Unsigned Integer 10-1 Degrees 4
19..20 H_x Unsigned Integer 10-2 µT 5
21..22 H_y Unsigned Integer 10-2 µT 5
23..24 H_z Unsigned Integer 10-2 µT 5
25..26 Spare Unsigned Integer N/A N/A 2
27..28 Spare Unsigned Integer N/A N/A 2
29..30 Spare Unsigned Integer N/A N/A 2
31..58 Repeat of Bytes 3..30 See Above N/A N/A
59 T_GPS_hours Unsigned Char 1.0 Hours
60 T_GPS_min Unsigned Char 1.0 Minutes
61 T_GPS_sec Unsigned Char 1.0 Seconds
62 T_GPS_Fract Sec Unsigned Char 10-2 Seconds
63 LatDeg Unsigned Char 1.0 Degrees 6

136

64 LatMin Unsigned Char 1.0/60 Degrees
65..68 LatMin Fraction Unsigned Long 10-6/60 Degrees
69 LonDeg Unsigned Char 1.0 Degrees 7
70 LonMin Unsigned Char 1.0/60 Degrees
71..74 LonMin Fraction Unsigned Long 10-6/60 Degrees
75 Muscle State Unsigned Char N/A N/A 10
76..77 Alt_Hae Unsigned Integer 1.0 Meters
78 Alt_Hae_Fraction Unsigned Char 10-2 Meters
79..80 Velocity North Unsigned Integer 10-2 Meters/Sec 8
81 Command State Unsigned Char N/A N/A 10
82..83 Ground Track Angle Unsigned Integer 1.0 Degrees 9
84 GndTkAngle_Fract Unsigned Char 10-1 Degrees
85..86 Velocity East Unsigned Integer 10-2 Meters/Sec 8
87..88 Velocity Up Unsigned Integer 10-2 Meters/Sec 8
89..90 LtpX Integer 1 Meters
91..92 LtpY Integer 1 Meters
93 Carriage Return Char N/A N/A
94 Line Feed Char N/A N/A

Table 1
Down Link Message

Notes:

1. The sync bytes will be 0xFF.

2. The spare words will be initialized to 0.

3. The temperature word will be biased by 25. This will preclude negative
temperature values in the raw data.

4. The values for pitch and roll may vary between +/- 80.0 degrees. To preclude
negative values in the down-linked data, 360 degrees will be added to negative
values of pitch and roll.

5. The field strength will be biased by 100. This will preclude negative values in the
raw data.

6. It is understood that this demonstration will be conducted in the northern
hemisphere. Therefore the Latitude will always be positive.

7. It is understood that this demonstration will be conducted in the continental US.
Therefore, the longitude will always be negative. The longitude data, however, will
be transmitted as a positive quantity.

8. The North, East and Up velocity components will be scaled integers with a
maximum value of 325 meters/sec. To preclude negative values in the down linked
data, 650 meters/second will be added to negative values of the velocity
components.

9. Ground track angle will be a positive quantity between 0 and 359.9 degrees.

10. The state of the muscles will be recorded in bits 0-3 for muscles 1-4 respectively.
A one in the bit position will indicate the muscle is pressurized. A 0 in the bit position
will indicate the respective muscle is vented. A muscle is considered pressurized if

137

the pressure is about 80 psi or greater. Bit 4 will represent the accumulator pressure,
and bit 5 will represent the pressure in the main tank.

11. Byte 3 will contain a unique System ID between 0 and 255.

Table 3 defines the uplink command parameters.

Byte
Number Parameter Data Type Scale Factor Units Notes

1 Sync Unsigned Char N/A N/A 1
2 Sync Unsigned Char N/A N/A 1
3 Message ID Unsigned Char N/A N/A 2
4 PMA command Unsigned Char N/A N/A 3
5 Not PMA command Unsigned Char N/A N/A 3
6..7 Message Count Unsigned Integer N/A N/A 5

Table 3
Uplink Message

Notes:

1. The sync characters shall be 0xFF.

2. The Uplink Message ID shall be 0x9C.

3. The following describes the meaning of the bits in the PMA command:
a. Bits 5 through 7 will be zero.

b. Bits 1 through 4 will be the PMA commands. Bit one will be the
command for PMA 1, bit two will be the command for PMA 2, bit three will be
the command for PMA 3 and bit 4 will be the command for PMA 4. A “1” on
any bit 1 through 4 will cause the corresponding PMA to inflate.

c. Bit 0 will be the computed even parity of bits 1 through 7.

4. The Not PMA command parameter will be formed from the ones complement of
the PMA command.

5. The message count starts at zero and increments by one each time the PMA
command is transmitted.

138

THIS PAGE INTENTIONALLY LEFT BLANK

139

APPENDIX C USER_SER.C (VER 17)

/**
** File : user_ser.c
** Project : Was Ac100/c30, Now AC-104
** Edit level : 17
** Directory : cpcprj/SerAGAS
**
** Abstract: : File contains functions which the user
** must define to interface with IP-SERIAL device
** driver.
** The functions must be called
**
** get_SERIAL_parameters
** user_sample_SERIAL_in
** user_SERIAL_out
**
** Templates for the functions are provided.
**
** get_SERIAL_parameters
** Function sets the asynchronous communication
** parameters for the IP-SERIAL module. Ring buffer
** sizes used to store received data must also be
** specified.
**
** user_SERIAL_out
** Function is called every scheduler interval. The
** user is responsible for creating a byte stream from the
** models floating point outputs. The user must ensure
** that the when writing these bytes to the output buffers
** that the buffers are not overflown.
**
** user_sample_SERIAL_in
** Function is called every sampling interval. The
** user is responsible for filling the floating-point
** vector which is used as input to the model for
** the current sampling interval.
**
**
** Modifications:
** --
** Creation : 07-01-93 Henry Tominaga
** Revised(1) : 08-23-93 Brent Roman
** Revised(2) : 11-18-93 Steve Lynch
** Revised(3) : 09-01-94 Steve Lynch
** Revised(4) : 01-17-96 Eric Hallberg [New IMU]
** Revised(5) : 03-15-96 Eric Hallberg [IMU Serial A / GPS Serial B]
** Revised(6) : 05-01-96 Eric Hallberg [IMU binary]
** Revised(7) : 11-19-99 Wen Sonntag [Conversion from C-30 to AC-104]
** Revised(8) : 02-09-00 Oleg Yakimenko [user_sample_SERIAL_in for new IMU]
** Revised(9) : 02-26-01 Oleg Yakimenko [user_sample_SERIAL_in for AGAS project]
** Revised(10) : 03-30-01 Oleg Yakimenko [user_sample_SERIAL_in for AGAS project (pressures
added)]

140

** Revised(11) : 04-18-01 Jim Johnson [Debug change buad rate on line 251 from 9600 to 38400]
** Revised(12) : 06-06-01 Jim Johnson [Added Vladimir Dobrokhodov user_SERIAL_out and
** shortTObyte Fcn. Removed "floatTMS2IEEE" This fcn is not used in AGAS
Uplink]
** Revised(13) : 06-21-01 Jim Johnson [Corrected output values for '1'fill, '0' vent]
** Revised(14) : 06-23-01 Jim Johnson [Added output delay If statement using modulus of System
Data rate]
** Revised(15) : 06-23-01 Jim Johnson [Cleaned unused code from file]
** Revised(16) : 07-09-01 Jim Johnson [Added State command of package to downlink]
** Revised(17) : 07-20-01 Jim Johnson [Added Additional bytes of downlink for Pred 'x' and 'y']
*/

#include <stddef.h>
#include <stdlib.h>
#include <math.h>
#include "sa_types.h"
#include "stdtypes.h"
#include "actypes.h"
#include "ioerrs.h"
#include "errcodes.h"
#include "iodefs.h"
#include "iodriver.h"
#include "ipserial.h"

#include "user_ser.h"

#define NULL 0

/*---- start of new code by LS -----------<change 15 removed some code from this section>-*/

/* number of input matrixx logical channels for Module B, Channel A */
#define NUMB_IN_LOG_CHAN_MODB_CHA 2

/* maximum frame lenght */
#define MAX_FRAME_IN_LEN 64
#define ETX_CHAR '\r'

/* "User" data structure for Serial In, Module B, Channel A */
struct SerInMBCA_str
{
 float LastFloat[NUMB_IN_LOG_CHAN_MODB_CHA];

 int SerOutNSamp;

 int BPut, BGet;
 unsigned char Buffer[600];
 unsigned char GlbFrame[MAX_FRAME_IN_LEN];
 unsigned char *CurrPtr;
 int FrameLen;
};

/* "User" data structure for all Serial Channels. */
struct UserSerial_str
{

141

// struct SerInMACA_str MACA;
// struct SerInMACB_str MACB;
 struct SerInMBCA_str MBCA;
// struct SerInMBCB_str MBCB;
};

/* Function Prototypes */
void shortTObyte(short oldbyte, short input,unsigned char* buf);
int NextChar(IOdevice *device, char *c);
int ReceiveFrame(IOdevice *device, unsigned char *message);
RetCode ReadSerialModuleB_ChanA(IOdevice *device, float model_float[]);
/*---- end of new code by LS < Change 12 some code deleted >----*/

 /* semaphores and serial parameters for each physical channel */
private struct
{ ISI_BOOLEAN allSent; ISI_BOOLEAN broken; unsigned baud;} line_state[2];

struct user_type
{
 int update_interval;
 int update_count;
};

typedef struct _bytes
{
 unsigned byte1 :8;
 unsigned byte2 :8;
 unsigned byte3 :8;
 unsigned byte4 :8;
}_bytes;

typedef union float_char
{
 float fl;
 _bytes ch;
} float_char;

/* global variables used in user_ser_in Mod A ch A */

short PMA_counter=0; // global counter of PMA commands transmitted
Byte prevPMApos; // byte to store previous PMA position

u_int buffer_data[200];
float last_float_a[20];// change from 18 to 20
float last_float_GPS[12];// change from 10 to 12 <17>
int first_frame_a = 0;
int missed_cr = 0;
int index;
int last_byte=0;
int DatOutCnt=0;

/**

142

** THE INTERNALS OF THE FOLLOWING THREE FUNCTIONS MUST **
** BE PROVIDED BY THE USER. PLEASE TAILOR FOR YOUR **
** OWN SPECIFIC APPLICATION. **
***/

/* Function: get_SERIAL_parameters ++
**
** Abstract:
** This functions is called by the ISI serial driver during the
** initilization phase. It allows the user to set up the serial
** hardware configuration. This templet show you how to set up the
** parameters. All of the parametes set in this templet EXCEPT
** those in the user_ptr MUST be set by the users version of this
** function.
**
** Parameters:
** hardware_channel (in) either chanA or chanB
** device_param (in/out) structure to be filled by this procedure.
** parity : set to NONE,EVEN,ODD
** baud_rate : set to any standard baud rate.
** stop_bits : set to ONE,TWO, or ONE_AND_HALF.
** transmit_data_size : set to 5,6,7 or 8 (bits);
** receive_data_size : set to 5,6,7 or 8 (bits);
** clock_multiplier : set to 1,16,32, or 64.
** buffer_size : set to a size larger than the amount of data
** expected to be recieved or sent in one
** scheduler period. recommended (200-2000).
** SERIAL_USER_PTR : void pointer that can be allocated and
** set here. The user can place anything they
** want to be passed around in the drivers
** context here. Note it can be dangerous to use
** static data in device drivers and any data
** that you wish save call to call should be
** placed in the drivers context.
**
** Returns:
** NONE
*/
public void get_SERIAL_parameters
 (
 unsigned int hardware_channel,
 volatile struct user_param *device_param,
 volatile struct ring_buffer_param *rec_buffer,
 IOdevice *device)
{
 int i;
 struct UserSerial_str *UserPtr;

 switch(device->config.type)
 {
 case IOinputDevice: printf(" INPUT device \n");
 break;
 case IOoutputDevice: printf(" OUTPUT device \n");
 break;
 }

143

 if (SERIAL_USER_PTR == NULL)
 {
 printf("DEBUG: inside get_SERIAL_parameters, PTR == NULL\n");
 SERIAL_USER_PTR = (void *)malloc(sizeof(struct UserSerial_str));
 UserPtr = (struct UserSerial_str *)SERIAL_USER_PTR;
 UserPtr->MBCA.SerOutNSamp = 5;
 UserPtr->MBCA.BPut = 0;
 UserPtr->MBCA.BGet = 0;
 UserPtr->MBCA.FrameLen = 0;
 UserPtr->MBCA.CurrPtr = UserPtr->MBCA.GlbFrame;

 for (i=0;i<NUMB_IN_LOG_CHAN_MODB_CHA;i++)
 UserPtr->MBCA.LastFloat[i] = 0;
 }
 else
 printf("DEBUG: inside get_SERIAL_parameters, PTR != NULL\n");
 if (hardware_channel == chanA || hardware_channel == chanB)
 {
 device_param->parity = NONE;
 device_param->baud_rate = 38400;//changed by JJ 010418
 device_param->stop_bits = ONE;
 device_param->transmit_data_size = 8;
 device_param->receive_data_size = 8;
 device_param->clock_multiplier = 16;
 /* set size for receive ring buffer */
 rec_buffer->buffer_size = 2000;
 }
 else
 {
 printf("INVALID CHANNEL\n");
 }

} /* end of function get_SERIAL_parameters */

/**
| Function: shortTObyte
| Return Value: None
| Parameters: Limit for counter of short; PMA command in short; buffer for output
|
| Action: Converts 16 bit short to 8 bit Byte
**/
void shortTObyte(short oldbyte, short input,unsigned char* buf)
{ short mask=1;
 int j;
 for(j=0; j<=oldbyte;j++, buf++)
 {
 if ((input & mask)>0)
 { *buf=1;}
 else
 { *buf=0;}
 mask=mask << 1;
 }
}//end of shortTObyte

144

/* **
** Function: user_SERIAL_out ++
**
** Abstract:
** This functions is called by the ISI serial driver during the output
** phase of each sheculer cycle. This function must check to see if
** there is room in the output buffer for hte data it wishhes to send.
** If there is room it must convert the system build outputs in the
** array model_floats to a byte stream and call write_serial to transmit
** these characters. The characters will be placed in the output buffer
** and during background processing the output buffer is emptied.
**
** Parameters:
** device (in/out) This pointer is passed in because it is a parameter
** needed in the num_bytes_in_buffer and write_serial
** procedures. THE ONLY field of this structure you
** should look at or modify is the USER_SERIAL_PTR.
** model_floats(in) Array of system build outputs indexed by the
** logical hardware channels picked in the HCE.
** ser_channel (in) chanA or chanB for special processing by user.
**
** Returns:
** OK on success or SERIAL_user_error on any error returning or calling
** IOerror with SERIAL_user_error will print the message that a error in
** the user routine has occurred and for more information look at the
** PC monitor.
**/
public RetCode user_SERIAL_out(IOdevice *device,
 float model_float[],
 u_int ser_channel)
{

 Byte cbuffer[7];
 Byte buf[16];
 u_int i;
 int j;
 RetCode return_val;
 serial_param_type *serptr;
 int Indicator;// used to determine which PMA command present

 return_val = OK;
 serptr = device->parameters;

 /***
 * Given floating point model output, please create *
 * buffer which contains bytes to be transmitted across *
 * serial channel. *
 **/
 if (numbytes_in_buffer(device->parameters) == 0)
 {
 cbuffer[0] =255;//Sync byte 0xFF
 cbuffer[1] =255;//Sync byte 0xFF
 cbuffer[2] =156;//Message ID 0x9C

145

 /***
 * model_float[i] is an interface array that consists
 * of 4 bytes (from 0 to 3) for PMA's
 * Convention: PMA=1- actuation/vent *
 * PMA=0- inflation
 * cbuffer[3] is the PMA command with the following
 * bit definitions
 * Bits 5-7 ZERO
 * Bit 4-1 Corresponding PMA 1-fill 0-vent
 * Bit 0 Even parity of 1-7
 * cbuffer[4] Ones complement of PMA comand
 ***/
 Indicator = 1000*model_float[0]+100*model_float[1]+10*model_float[2]+model_float[3];
 switch(Indicator)
 { case 1000 : //1, Only PMA 1 vented command 0001 1101 <change 13>
 {// 1-0-0-0
 cbuffer[3] =29;}
 break;
 case 100 : //2, Only PMA 2 vented/ 0001 1011 <change 13>
 {// 0-1-0-0
 cbuffer[3] =27;}
 break;
 case 10 : //3, Only PMA 3 vented/ 0001 0111 <change 13>
 {// 0-0-1-0
 cbuffer[3] =23;}
 break;
 case 1 : //4, Only PMA 4 vented/ 0000 1111 <change 13>
 {// 0-0-0-1
 cbuffer[3] =15;}
 break;
 case 1100 : //5, PMAs 1 & 2 vented/ 0001 1000 <change 13>
 {// 1-1-0-0
 cbuffer[3] =24;}
 break;
 case 110 : //6, PMAs 2 & 3 vented/ 0001 0010 <change 13>
 {// 0-1-1-0
 cbuffer[3] =18;}
 break;
 case 11 : //7, PMAs 3 & 4 vented/ 0000 0110 <change 13>
 {// 0-0-1-1
 cbuffer[3] =6;}
 break;
 case 1001 : //8, PMAs 1 & 4 vented/ 0000 1100 <change 13>
 {// 1-0-0-1
 cbuffer[3] =12;}
 break;
 case 0 : //9, All PMA's Filled/ 0001 1110
 {// 0-0-0-0
 cbuffer[3] =30;}
 break;
 case 1111 : //10, All PMA's Vented/ 0000 0000
 {// 1-1-1-1
 cbuffer[3] =0;}
 break;
 default:

146

 // Combination of PMA undefined. Exeptional situation. Handle with previous
PMA position
 cbuffer[3]=prevPMApos;
 break;
 }// end of switch

 cbuffer[4] =~cbuffer[3];// ones cmplement
 prevPMApos=cbuffer[3];// store the current position of PMA

 //****************Begin <change 14>*******************************
 DatOutCnt++;

 if ((DatOutCnt%5)==0)// Modulus of '5' due to sys model frequency of 5. Provides 1hz
transmit
 {
 shortTObyte(15,PMA_counter++, buf);// convert PMA_counter from short to
byte
 cbuffer[5] =0;cbuffer[6] =0;
 for (i=0;i<=7;i++)
 {
 cbuffer[5] +=((int)buf[i])*pow(2,i);//low byte on Ticks counter
 cbuffer[6] +=((int)buf[i+8])*pow(2,i);//high byte on Ticks counter
 }//end of for

 /**
 * Fills the output buffer with data to be transmitted *
 * by the background portion of the serial driver *
 **/
 return_val = write_serial(device->parameters,cbuffer,7);
 }// end of if
 //****************end <change 14>*******************************

 if (return_val == -1)
 {
 if (serptr->hardware_channel == chanA)
 {
 IOerror(DDK_user_module(device, device->config.module),
SERIAL_IP_inputa_ring_buffer_overflow);
 }
 else if (serptr->hardware_channel == chanB)
 {
 IOerror(DDK_user_module(device, device->config.module),
SERIAL_IP_inputb_ring_buffer_overflow);
 }
 }
 }
 return OK;
} /* End of user_SERIAL_out */

/* Function: user_sample_SERIAL_in ++
**
** Abstract:
** This functions is called by the ISI serial driver during the input
** phase of each sheculer cycle. This function must check to see if
** there is enough data in the input buffer to extract the data and

147

** process it. If there is not enough data the user must check to
** see if there has not been enough data for to long and detect a
** loss of data error.
**
** If there is enough data to extract the user must read the data from
** the input buffer and convert it to floating point values to be
** passed into the system build model. The floating point values
** get placed in the modle_floats array which is indexed on logical
** channel number selected in the HCE.
**
** Parameters:
** device (in/out) This pointer is passed in because it is a parameter
** needed in the num_bytes_in_buffer and read_serial
** procedures. THE ONLY field of this structure you
** should look at or modify is the USER_SERIAL_PTR.
** model_floats(in) Array of system build outputs indexed by the
** logical hardware channels picked in the HCE.
** ser_channel (in) chanA or chanB for special processing by user.
**
** Returns:
** OK on success or SERIAL_user_error on any error (To print an
** error message use printx and it will be displayed on the PC
** monitor.) returning or calling IOerr with SERIAL_user_error
** will print the message that a erron in the user routine has occured
** and for more information look at the PC monitor.
*/
public RetCode user_sample_SERIAL_in(IOdevice *device,
 float model_float[],
 u_int ser_channel)

{

 u_int soft_buffer[200];

 unsigned char item[1];

 float k;

 int i,j, ii, NumBytes, NumBytesSkipped;
 int s = 0;
 int p = 0;
 int length = 20;//<Change 17>
 int IMU_length = 28;
 int GPS_start = 56; // =2*28
 int input_message = 90; // =2*28+34

 float default_data[20];//<Change 17>

 struct user_type *user_ptr;
 serial_param_type *serptr;
 serptr = device->parameters;

 /**
 * set user pointer to buffer allocated by get parameters *
 * this buffer is passed around with the structure device *

148

 * and should only be accessed via the SERIAL_USER_PTR *
 * define *
 ***/
 user_ptr = SERIAL_USER_PTR;

 // forming the sets of scales and default data
for (i=0; i<length; i++)
{
 default_data[i] = 1.0;
} /* end for loop */

if (first_frame_a==0)
{
 for (j=0;j<length;j++)
 {
 last_float_a[j] = default_data[j];
 }/* end for*/
 model_float = last_float_a;
 index = 0;
 first_frame_a = 1;
 return OK;
}/* end if*/

// reading data into the soft_buffer
NumBytes=numbytes_in_buffer(device->parameters);
NumBytesSkipped = NumBytes;

if (NumBytes != 0)
{
 while((numbytes_in_buffer(device->parameters)) > 0)
 {
 read_serial(device->parameters,1,item);
 soft_buffer[s]=(u_int) item[0];
 s=s+1;
 }/* end while*/

// finding data in the package
/***
* 0. First come 2 sync bytes which are 255 255 *
* 1. Then come 28 bytes from IMU *
* spare - two bytes (3...4) *
* spare - two bytes (5...6) *
* spare - two bytes (7...8) *
* spare - two bytes (9...10) *
* 1 Temp - two bytes (11...12) *
* 2 Heading - two bytes (13...14) *
* 3 Roll - two bytes (15...16) *
* 4 Pitch - two bytes (17...18) *
* 5 H_x - two bytes (19...20) *
* 6 H_y - two bytes (21...22) *
* 7 H_z - two bytes (23...24) *
* spare - two bytes (25...26) *
* spare - two bytes (27...28) *
* spare - two bytes (29...30) *
* all IMU data is conFigured into 16-bit word through: *

149

* 16-bit word = MSB*256 + LSB *
* 2. Then the whole message from IMU (28 bytes) repeats *
* spare - two bytes (31...32) *
* spare - two bytes (33...34) *
* spare - two bytes (35...36) *
* spare - two bytes (37...38) *
* 1[0] Temp - two bytes (39...40) *
* 2[1] Heading - two bytes (41...42) *
* 3[2] Roll - two bytes (43...44) *
* 4[3] Pitch - two bytes (45...46) *
* 5[4] H_x - two bytes (47...48) *
* 6[5] H_y - two bytes (49...50) *
* 7[6] H_z - two bytes (51...52) *
* spare - two bytes (53...54) *
* spare - two bytes (55...56) *
* spare - two bytes (57...58) *
* 3. Finally comes 30 bytes from GPS: *
* 8[7] T_GPS - four bytes (h,m,s,dec_s) (59...62)*
* 9[8] Lat - six bytes (d,m,dec_min(4))(63...68)*
* 10[9] Lon - six bytes (d,m,dec_min(4))(69...74)*
*11[10] Press - one byte (75) *
12[11] H_msl - three bytes (m(2),dec_m) (76...78)
13[12] V_North - two bytes (mps(2)) (79...80)
*14[16] State - one byte (81) *
15[13] GrdTrAn - three bytes (d(2),dec_d) (82...84)
16[14] V_East - two bytes (mps(2)) (85...86)
17[15] V_Up - two bytes (mps(2)) (87...88)
18[17] Pred_E - two bytes (m(2)) (89...90)
19[18] Pred_N - two bytes (m(2)) (91...92)
* CR - one byte (93) *
* LF - one byte (94) *
* all n-bytes words can be decode by shifting *
*
 *
* Message ends with a spare byte, CR and LF *
* In total: 2+28+28+34+2=94bytes *
*
 *
* Model_float ends with a number of bytes captured *
*20[19] NumBytes *
**/
 while (p < s)
 {
 if (last_byte == 255 && soft_buffer[p] == 255)
 {
 missed_cr = 1; // the end of the previous package
 index = 0; // setup of the output data
 NumBytesSkipped=p;
 }/* end if*/
 else
 {
 last_byte = soft_buffer[p];
 if (missed_cr == 1)
 {
 buffer_data[index] = soft_buffer[p];

150

 index=index + 1;
 }/* end if */

 if (index == IMU_length)
 {
 for (i=0; i<4; i++)
 {
 last_float_a[i] = (256*buffer_data[8+i*2] +
buffer_data[9+i*2])/10.;
 } /* end for loop */

 for (i=0; i<3; i++)
 {
 last_float_a[4+i] = (256*buffer_data[16+i*2] +
buffer_data[17+i*2])/100.-100.;
 } /* end for loop */
 } /* end if */

 if(index == 2*IMU_length)
 {
 for (i=0; i<4; i++)
 {
 last_float_a[i] = (256*buffer_data[8+IMU_length+i*2] +
 buffer_data[9+IMU_length+i*2])/10.;
 } /* end for loop */

 for (i=0; i<3; i++)
 {
 last_float_a[4+i] = (256*buffer_data[16+IMU_length+i*2] +
 buffer_data[17+IMU_length+i*2])/100.-100.;
 } /* end for loop */
 }/* end if */

 if(index == input_message)
 {
 index = 0;
 missed_cr = 0;

 // Time GPS
 last_float_GPS[0]=3600*buffer_data[GPS_start] +
 60*buffer_data[GPS_start+1] +
 buffer_data[GPS_start+2] +
 buffer_data[GPS_start+3]/10.;

 // Lat and Lon GPS
 for (i=1; i<3; i++)
 {
 last_float_GPS[i]= buffer_data[GPS_start+4+6*(i-1)]+
 (buffer_data[GPS_start+5+6*(i-1)]+
 (6777216*buffer_data[GPS_start+6+6*(i-1)]+
 65536*buffer_data[GPS_start+7+6*(i-1)]+
 256*buffer_data[GPS_start+8+6*(i-1)]+
 buffer_data[GPS_start+9+6*(i-1)])/1000000.)/60.;
 } /* end for loop */

151

 // Pressures Data
 last_float_GPS[3]= buffer_data[GPS_start+16];

 // Altitude
 last_float_GPS[4]=256*buffer_data[GPS_start+17]+
 buffer_data[GPS_start+18]+
 buffer_data[GPS_start+19]/100.;

 // Velocity North
 last_float_GPS[5]=(256*buffer_data[GPS_start+20]+
 buffer_data[GPS_start+21])/100.;

 // State Data
 <Change 16)
 last_float_GPS[9]= buffer_data[GPS_start+22];

 // Ground Track Angle
 last_float_GPS[6]=256*buffer_data[GPS_start+23]+
 buffer_data[GPS_start+24]+
 buffer_data[GPS_start+25]/100.;

 // Velocity East; Velocity Up
 for (i=1; i<3; i++)
 {
 last_float_GPS[6+i]=(256*buffer_data[GPS_start+26+2*(i-
1)]+
 buffer_data[GPS_start+27+2*(i-1)])/100.;
 } /* end for loop */

 // Pred North
 last_float_GPS[10]=(256*buffer_data[GPS_start+32]+
 buffer_data[GPS_start+33]);

 // Pred East
 last_float_GPS[11]=(256*buffer_data[GPS_start+30]+
 buffer_data[GPS_start+31]);
 }/*end if*/
 }/* end else*/
 p=p+1;
 }/* end while */
}/*end if*/

// GPS glitches checking
// if (last_float_GPS[3] == 2) {
for (ii=0; ii<12; ii++){ //<Change 16 to 10,17 to 12>
 last_float_a[7+ii]=last_float_GPS[ii];
 } /* end for loop */
// } /* end if */

for (j=0;j<length-1;j++){
 model_float[j] = last_float_a[j];
}/* end for*/

 model_float [19] = NumBytes;//<Change 16>to 17, <ch17> to 19

152

// model_float [14] = NumBytesSkipped;
// model_float [15] = index;

return OK;

} /* user_sample_SERIAL_in */

/***
********************** END OF FILE *************************
**/

153

APPENDIX D AGAS_GNC.H AND AGAS_GNC.C (VER 3)

/***
** File: AGAS_GNC.h
** Name: Jim Johnson
** Revisions:
** <1> 010717 Add: GLOBALS; InRad, OutBaseRad, HalfCosOpAng.
** Chg: '//' to '/*'
** <2> 010723 Add: Local variable to tolerance for InRad or 1/2 outercone.
** Chg: '* varname' to ' *varname'
** Chg: Increase OuterCone to 18,000' altitude
** Operating
** Environment: Win2000
** Compiler: Visual C++ 6.0
** Date: 10 July 2001
** Description: Defines structures and Prototype calls
***/
#ifndef AGAS_GNC
#define AGAS_GNC
#include <math.h>

const float deg2rad=0.0174533;
const float m2ft=3.2808;

/**
** Struct: SerData_out
** Purpose: Holds the data for use in the controller
**/
struct SerData_out {
 float nLTP_ft;
 float eLTP_ft;
 float zLTP_ft;
 float Heading_rad;
 float Roll_rad;
 float Pitch_rad;
};

/**
** Struct: SerData_in
** Purpose: Holds the data from the navigation sensors on the Platform
**/
struct SerData_in {
 float SerHeadingDeg;
 float SerRollDeg;
 float SerPitchDeg;
 float SerLatDeg;
 float SerLonDeg;
 float SerAlt_m;
};

/**
** Struct: LatLonAlt

154

** Purpose: Holds the lat/lon/alt of platform
** converted from degrees to radians
**/
struct LatLonAlt {
 float Lat_rad;
 float Lon_rad;
 float Alt_m ;
};

/**
** Struct: Subsys_1_out
** Purpose: Holds the radial and normalized to the radial x(north)and y
** (east) in the body plane from the predicted trajectory.
** North in Body points towards PMA 3
** East in Body point to towards PMA 4
**/
struct Subsys_1_out {
 float radial_error;
 float Normalized_Nb;
 float Normalized_Eb;
};

/**
** Struct: Errors_tmp
** Purpose: Holds difference of platform to trajectory in body axis
** North in Body points towards PMA 3
** East in Body point to towards PMA 4
**/
struct Errors_tmp {
 float errN_in_Body;
 float errE_in_Body;
 float errZ_in_Body;
};

/**
** Struct: Sys_ExtIn
** Purpose: Provide the Pos error in LTP for converion to body axis and
** Provides body orientation for coordinate axis transformation
**/
struct Sys_ExtIn {
 float Pos_err_N;
 float Pos_err_E;
 float Pos_err_Z;
 float Heading_rad;
 float Pitch_rad;
 float Roll_rad;
};

/**
** Struct: States
** Purpose: Holds the inputs for the Actuation/Fill logic
**/
struct States {
 float Tolerance_S1;/* status of control: No(0), Yes(1)*/
 int Tolerance_S2;/*state of control:Controlled(1),Inside_NFP(2),Drifting(3) */

155

};

/**
** Struct: PMA_out
** Purpose: Holds the stae of the PMA. 0-Fill, 1-Actuate(Vent)
**/
struct PMA_out {
 int PMA1_on_off;
 int PMA2_on_off;
 int PMA3_on_off;
 int PMA4_on_off;
};

/**
** Struct: CAT
** Purpose: Point of Computed air Trajectory for Altitude provided
**/
struct CAT {
 float LTP_n_ft;
 float LTP_e_ft;
};
/***Prototype to Load variables into function, convert data and call controller***/
int GNC(float PkgHead, float PkgAlt, float PkgLat, float PkgLon,
 float Desired_n_LTPm, float Desired_e_LTPm);

/***Prototype to Load the structures defined in header file formatted data***/
void ser_data(struct SerData_in *U, struct SerData_out *Y);

/***Prototype to to convert platform data from degrees to radians***/
void data_preprocessing(struct SerData_in *U, struct SerData_out *Y ,
 struct LatLonAlt *tmp);

/***Prototype to convert Lat/Lon of Pkg to LTP coordinates***/
void ltp_coordinates(struct SerData_out *Y,struct LatLonAlt *tmp);

/***Prototype to define the PMA state from delta of platform to trajectory***/
int Controller(struct SerData_out *U, PMA_out *Y, CAT *T);

/***Prototype to Compute the RMS of the axis sums and normalizes body x,y.***/
void Errors_in_Body(struct Sys_ExtIn *U,struct Subsys_1_out *Y);

/***Prototype to Convert the errors in LTP to body axis errors***/
void U2Body(struct Sys_ExtIn *U,struct Subsys_1_out *Y,
 struct Errors_tmp *err_tmp);

/***Prototype to determine the state for actuation logic.***/
float Tolerance(float radial_error, float outercone, States *X);

/***Prototype to define outercone size for comparison to radial error ***/
float OuterCone(struct SerData_out *Y);

#endif

156

/***
** File: AGAS_GNC.cpp
** Name: Jim Johnson
** Revisions: Modification of System Build C files
** <1> 010717 Add: GLOBALS; InRad, OutBaseRad, HalfCosOpAng.
** Chg: '//' to '/*'
** <2> 010723 Add: Local variable to tolerance for InRad or 1/2 outercone.
** Chg: '* varname' to ' *varname'
** Chg: Increase OuterCone to 18,000' altitude
** <3> 010806 Chg: Moved "Prev_S2 = X->Tolerance_S2;" in Tolerance
Function from inside
** switch to outside switch. Simplified Logic
to prevent lock out
** Operating
** Environment: Win2000
** Compiler: Visual C++ 6.0
** Date: 10 July 2001
** Description: Provide Pnumatic Muscle Actuator command based on Position of
** Payload Package to the Desired Trajectory for the Package Altitude
**
** MAIN FILE NOTES
** MAIN FILE NOTES
** Inputs:
** Outputs: Integer corresponding to binary Byte format for Muscle Command
** Process: None
** Assumptions: PkgLat/PkgLon/PkgHead/latitude0/longitude0 are in Degrees.
** PkgAlt/altitude0/Desired_n_LTP/Desired_e_LTP in meters
** Warnings: Conversion from 'double' to 'float', possible loss of data
**/
#include"AGAS_GNC.H"

extern float longitude0;
extern float latitude0;
extern float altitude0;
extern float InRad;/* radius of inner cone in ft [<ch2> negated by Local Variable]*/
extern float OutBaseRad;/* radius of base of outer cone in ft*/
extern float HalfCosOpAng;/* one half the cosine of the operating angel*/

/**
** Function: GNC
** Return Value; Int corresponding to PMA state commanded
** Parameter; PkgHead(Heading of Package in degrees)
** PkgAlt(Altitude of Package in meters)
** PkgLat(Latitude of Package in degrees)
** PkgLon(Longitude of Package in degrees)
** Desired_n_LTPm(Desired LTP northing in meters for PkgAlt)
** Desired_e_LTPm(Desired LTP easting in meters for PkgAlt)
** Purpose: Defines the inputs and calls the function to convert data
** and define command state.
**/
int GNC(float PkgHead, float PkgAlt, float PkgLat, float PkgLon,
 float Desired_n_LTPm, float Desired_e_LTPm)
{

157

 SerData_in *SDIN = new SerData_in;
 SerData_out *SDOUT = new SerData_out;
 PMA_out *PMAOUT = new PMA_out;
 CAT *Where_To = new CAT;

 SDIN->SerAlt_m=PkgAlt;
 SDIN->SerHeadingDeg=PkgHead;
 SDIN->SerLatDeg=PkgLat;
 SDIN->SerLonDeg=PkgLon;
 SDIN->SerPitchDeg=0;/*Future use??*/
 SDIN->SerRollDeg=0;/* Future use??*/

 SDOUT->Heading_rad=0;
 SDOUT->Pitch_rad=0;
 SDOUT->Roll_rad=0;
 SDOUT->nLTP_ft=0;
 SDOUT->eLTP_ft=0;
 SDOUT->zLTP_ft=0;

 PMAOUT->PMA1_on_off=0;/* Zero is Fill. One is Vent (actuation) */
 PMAOUT->PMA2_on_off=0;/* internal to GNC function. */
 PMAOUT->PMA3_on_off=0;/* Return value One in place holder is Fill */
 PMAOUT->PMA4_on_off=0;/* and Zero in place holder is actuate (vent)*/

 Where_To->LTP_n_ft=Desired_n_LTPm*m2ft;
 Where_To->LTP_e_ft=Desired_e_LTPm*m2ft;

 ser_data(SDIN,SDOUT);
 int output=Controller(SDOUT, PMAOUT, Where_To);
 return output;
}/* end of GNC*/

/**
** Function: ser_data
** Return Value; None
** Parameter; SerData_out (LTP position (feet) and orientation (Rads))
** SerData_in (SerHeadingDeg;SerRollDeg;SerPitchDeg;
** SerLatDeg;SerLonDeg;SerAlt_m)
** Purpose: Class function that loads the structures defined in the header file
**/
void ser_data(struct SerData_in *U, struct SerData_out *Y)
{
 struct LatLonAlt tmp;/* temporary variable*/
 data_preprocessing(U,Y, &tmp);
 ltp_coordinates(Y, &tmp);
}/* end of ser_data*/

/**
** Function: data_preprocessing
** Return Value; None
** Parameter; SerData_in (SerHeadingDeg;SerRollDeg;SerPitchDeg;
** SerLatDeg;SerLonDeg;SerAlt_m)
** SerData_out (LTP position (feet) and orientation (Rads))
** LatLonAlt (Lat_rad; Lon_rad; Alt_m)
** Purpose: Converts the Platform Data from degrees to radians.

158

**/
void data_preprocessing(struct SerData_in *U, struct SerData_out *Y , struct LatLonAlt *tmp)
{
 Y->Heading_rad = 0.0174533*U->SerHeadingDeg;
 Y->Roll_rad = deg2rad*U->SerRollDeg;
 Y->Pitch_rad = deg2rad*U->SerPitchDeg;
 tmp->Lat_rad = deg2rad*U->SerLatDeg;
 tmp->Lon_rad = deg2rad*U->SerLonDeg;
 tmp->Alt_m = U->SerAlt_m;
}/*end of data_processing*/

/**
** Function: ltp_coordinates
** Return Value; None
** Parameter; longitude0 (Longitude of LTP Origin (degrees)
** latitude0 (Latutude of LTP Origin (degrees)
** altitude0 (Altitude above MSL of LTP Origin (meters)
** SerData_out (LTP position (feet) and orientation (Rads))
** LatLonAlt (Lat_rad; Lon_rad; Alt_m)
** Purpose: Reads in Lat/Lon/Alt of DZ to define the origin of the LTP
** and reads Lat/Lon/Alt of platform to define platform
** orientation in the LTP.
**/
void ltp_coordinates(struct SerData_out *Y,struct LatLonAlt *tmp)
{ /* local variables*/
 float lat_rad0,lon_rad0,h,h0,hh,hh0;
 float x0ecef_m,y0ecef_m,z0ecef_m;
 float xecef_m,yecef_m,zecef_m;

 /***ECEF Origin***/
 lat_rad0 = deg2rad*latitude0;
 lon_rad0 = deg2rad*longitude0;
 /* Height of LTP origin above msl*/
 h0 = altitude0;
 /*ECEF radial dist of the msl for the Latitude of origin*/
 hh0 = 6378137/sqrt(1 - 0.00669437999013*pow(sin(lat_rad0),(double)2));

 x0ecef_m = (hh0 + h0)*cos(lat_rad0)*cos(lon_rad0);
 y0ecef_m = (hh0 + h0)*cos(lat_rad0)*sin(lon_rad0);
 z0ecef_m = (hh0*0.99330562000986999 + h0)*sin(lat_rad0);

 /***ECEF Vector of Platform from ECEF posit of DZ***/
 /* Height of Platform above msl*/
 h = tmp->Alt_m;
 /*ECEF radial dist of msl for the Latitude of Platform*/
 hh = 6378137/sqrt(1 - 0.00669437999013*pow(sin(tmp->Lat_rad),(double)2));

 xecef_m = (hh + h)*cos(tmp->Lat_rad)*cos(tmp->Lon_rad) - x0ecef_m;
 yecef_m = (hh + h)*cos(tmp->Lat_rad)*sin(tmp->Lon_rad) - y0ecef_m;
 zecef_m = (hh*0.99330562000986999 + h)*sin(tmp->Lat_rad) - z0ecef_m;

 /*** Coordinate transformation of ECEF Vector to LTP Vector***/
 Y->nLTP_ft = m2ft*(-xecef_m*sin(lat_rad0)*cos(lon_rad0) - yecef_m*sin(lat_rad0)*sin(
 lon_rad0) + zecef_m*cos(lat_rad0));
 Y->eLTP_ft = m2ft*(-xecef_m*sin(lon_rad0) + yecef_m*cos(lon_rad0));

159

 Y->zLTP_ft = -m2ft*((-xecef_m*cos(lat_rad0)*cos(lon_rad0) - yecef_m*cos(lat_rad0)*
 sin(lon_rad0) - zecef_m*sin(lat_rad0)));

}/* end of ltp_coordinates*/

/**
** Function: Controller
** Return Value; none
** Parameter; SerData_out(LTP position (feet) and orientation (Rads))
** PMA_out(Holds the state of the PMA. 0-Fill, 1-
Actuate(Vent))
** CAT(Computed Air Trajectory Point)
** Purpose: Defines the PMA state from the delta of platform to trajectory
**/
int Controller(struct SerData_out *U, PMA_out *Y, CAT *T)
{

 Sys_ExtIn ErrBodyIn;
 Subsys_1_out ErrBodyOut;
 States Cont_State;
 int actuate_PMA_1,
 actuate_PMA_2,
 actuate_PMA_3,
 actuate_PMA_4,
 PMA_command,
 Indicator;
 static int prevPMAcmd;

 float rad_err,Tolerance_1;

 ErrBodyIn.Pos_err_N = T->LTP_n_ft - U->nLTP_ft;
 ErrBodyIn.Pos_err_E = T->LTP_e_ft - U->eLTP_ft;
 ErrBodyIn.Pos_err_Z =0;

 ErrBodyIn.Heading_rad = U->Heading_rad;
 ErrBodyIn.Pitch_rad = U->Pitch_rad;
 ErrBodyIn.Roll_rad = U->Roll_rad;

 Errors_in_Body(&ErrBodyIn,&ErrBodyOut);

 rad_err= ErrBodyOut.radial_error;
 Tolerance_1=Tolerance(rad_err, OuterCone(U),&Cont_State);

 actuate_PMA_3 = ErrBodyOut.Normalized_Nb < -HalfCosOpAng;
 actuate_PMA_1 = ErrBodyOut.Normalized_Nb > HalfCosOpAng;
 actuate_PMA_2 = ErrBodyOut.Normalized_Eb > HalfCosOpAng;
 actuate_PMA_4 = ErrBodyOut.Normalized_Eb < -HalfCosOpAng;

 if (actuate_PMA_1 && Tolerance_1 > 0.0)
 {
 Y->PMA1_on_off = 1; /*Vent*/
 }
 else

160

 {
 Y->PMA1_on_off = 0; /*Fill*/
 }

 if (actuate_PMA_2 && Tolerance_1 > 0.0)
 {
 Y->PMA2_on_off = 1; /*Vent*/
 }
 else
 {
 Y->PMA2_on_off = 0; /*Fill*/
 }

 if (actuate_PMA_4 && Tolerance_1 > 0.0)
 {
 Y->PMA4_on_off = 1; /*Vent*/
 }
 else
 {
 Y->PMA4_on_off = 0; /*Fill*/
 }

 if (actuate_PMA_3 && Tolerance_1 > 0.0)
 {
 Y->PMA3_on_off = 1; /*Vent*/
 }
 else
 {
 Y->PMA3_on_off = 0; /*Fill*/
 }

 Indicator = 1000*Y->PMA4_on_off+100*Y->PMA3_on_off+10*Y->PMA2_on_off+Y-
>PMA1_on_off;
 switch(Indicator)
 {
 case 1 : /* Only PMA 1 vented command 0000 1110*/
 {/*PMA4vent- PMA3vent- PMA2vent- PMA1vent
 0 - 0 - 0
 - 1 */
 PMA_command =14;}
 break;
 case 10 : /*2, Only PMA 2 vented/ 0000 1101*/
 {/* 0-0-1-0*/
 PMA_command =13;}
 break;
 case 100 : /*3, Only PMA 3 vented/ 0000 1011*/
 {/* 0-1-0-0*/
 PMA_command =11;}
 break;
 case 1000 : /*4, Only PMA 4 vented/ 0000 0111*/
 {/* 1-0-0-0*/
 PMA_command =7;}
 break;
 case 11 : /*5, PMAs 1 & 2 vented/ 0000 1100*/

161

 {/* 0-0-1-1*/
 PMA_command =12;}
 break;
 case 110 : /*6, PMAs 2 & 3 vented/ 0000 1001*/
 {/* 0-1-1-0*/
 PMA_command =9;}
 break;
 case 1100 : /*7, PMAs 3 & 4 vented/ 0000 0011*/
 {/* 1-1-0-0*/
 PMA_command =3;}
 break;
 case 1001 : /*8, PMAs 1 & 4 vented/ 0000 0110*/
 {/* 1-0-0-1*/
 PMA_command =6;}
 break;
 case 0 : /*9, All PMA's Filled/ 0000 1111*/
 {/* 0-0-0-0*/
 PMA_command =15;}
 break;
 case 1111 : /*10, All PMA's Vented/ 0000 0000*/
 {/* 1-1-1-1*/
 PMA_command =0;}
 break;
 default :
 /* Combination of PMA undefined. Exeptional situation. Handle with previous PMA
position*/
 PMA_command=prevPMAcmd;
 break;
 }/* end of switch*/
 return PMA_command;

}/* end of Controller*/

/**
** Function: Errors_in_Body
** Return Value; None
** Parameter; Sys_ExtIn(Body orientation, errors in LTP),
** Subsys_1_out(Normalized errors and radial error in Body)
** Purpose: Compute the RMS of the axis sums and normalizes body x,y.
**/
void Errors_in_Body(struct Sys_ExtIn *U,struct Subsys_1_out *Y)
{
 struct Errors_tmp err_tmp;
 U2Body(U,Y, &err_tmp);
 /* {Errors_in_Body.Norm of Errors.24} System Build block Number*/
 Y->radial_error = pow((pow(err_tmp.errN_in_Body,2.0)+
 pow(err_tmp.errE_in_Body,2.0)+

 pow(err_tmp.errZ_in_Body,2.0)),0.5);/*Norm of x,y,z*/
 /* {Errors_in_Body.N_ed Errors.25} */
 Y->Normalized_Nb = err_tmp.errN_in_Body/Y->radial_error;
 Y->Normalized_Eb = err_tmp.errE_in_Body/Y->radial_error;
}/* end of Errors_in Body */

162

/**
** Function: U2Body <Three-Axis Rotation >
** Return Value; None
** Parameter; Sys_ExtIn(Body orientation, errors in LTP),
** Subsys_1_out(Normalized errors and radial error in Body)
** Errors_tmp(Differences from Platform to trajectoy in LTP)
** Purpose: Converts the errors in LTP to body axis errors
**/
void U2Body(struct Sys_ExtIn *U,struct Subsys_1_out *Y, struct Errors_tmp *err_tmp)
{
 /***** Algorithmic Local Variables. *****/

 float c4, c5, c6;
 float s4, s5, s6;
 float c6c4, c6s4, s6c4, s6s4;
 float dc[3][3];

 /* {Pos_err_Z} */
 U->Pos_err_Z = 0;

 /* {Errors_in_Body.U2B transformation.13} */

 c4 = cos(U->Heading_rad);
 c5 = cos(U->Pitch_rad);
 c6 = cos(U->Roll_rad);
 s4 = sin(U->Heading_rad);
 s5 = sin(U->Pitch_rad);
 s6 = sin(U->Roll_rad);

 c6c4 = c6*c4;
 s6s4 = s6*s4;
 s6c4 = s6*c4;
 c6s4 = c6*s4;

 dc[2][2] = c6*c5;
 dc[2][1] = -s6c4 + c6s4*s5;
 dc[2][0] = s6s4 - (-c6c4)*s5;
 dc[1][2] = -(-s6)*c5;
 dc[1][1] = c6c4 - (-s6s4)*s5;
 dc[1][0] = -c6s4 + s6c4*s5;
 dc[0][2] = -s5;
 dc[0][1] = -(-c5)*s4;
 dc[0][0] = c5*c4;

 err_tmp->errN_in_Body = dc[0][0]*U->Pos_err_N + dc[0][1]*U->Pos_err_E + dc[0][2]*U-
>Pos_err_Z;
 err_tmp->errE_in_Body = dc[1][0]*U->Pos_err_N + dc[1][1]*U->Pos_err_E + dc[1][2]*U-
>Pos_err_Z;
 err_tmp->errZ_in_Body = dc[2][0]*U->Pos_err_N + dc[2][1]*U->Pos_err_E + dc[2][2]*U-
>Pos_err_Z;
 }/* end of U2Body*/

/**

163

** Function: Tolerance
** Return Value; Value for logical actuation determination
** Parameter; radial_error(error in feet from trajectory),
** outercone(size of radial error tolerated prior to activation)
** States(Holds the inputs for the Actuation/Fill logic)
** Purpose: Case statement for state dertimination.
**/
float Tolerance(float radial_error, float outercone, States *X)
{
 static int Prev_S2=1;
 float InRad=outercone/2;/* defines local Variable InRad as one half the outercone Radius
 Delete above line to use the global InRad*/

 switch (Prev_S2) /* analyse&change current state of a system/ possibly define in main*/
 {
 case 1:
 if (radial_error > InRad) {
 X->Tolerance_S2 = 1; /*Controlled*/
 }
 else {
 X->Tolerance_S2 = 2; /*Inside_inner_radius*/
 }
 break;
 case 2:
 if (radial_error <= InRad) {
 X->Tolerance_S2 = 2; /*Stays Inside_inner_radius*/
 }
 else {
 X->Tolerance_S2 = 3; /*Drifting between cones*/
 }
 break;
 case 3:
 if (radial_error >= outercone) {
 X->Tolerance_S2 = 1; /*Controlled*/
 }
 else {
 X->Tolerance_S2 = 3; /*Stays Drifting*/
 }
 break;
 default:
 X->Tolerance_S2 = 3; /*Drifting*/
 break;
 }/* end of switch*/

 Prev_S2 = X->Tolerance_S2;/*Moved from inside above switch 010806*/

 switch (X->Tolerance_S2)/*new value of X->Tolerance_S1*/
 {
 case 1:/*Controlled*/
 X->Tolerance_S1 = 1.0;
 break;
 case 2:/*Inside_NFP == No control*/
 X->Tolerance_S1 = 0.0;
 break;
 case 3:/*Drifting == No control*/

164

 X->Tolerance_S1 = 0.0;
 break;
 default:
 break;
 }/*end of switch*/

 return X->Tolerance_S1;
}/* end of tolerance*/

/**
** Function: OuterCone
** Return Value; Size of outer cone for defined altitude (z)
** Parameter; gain(Unitary for future use if needed),
** SerData_out(LTP position (feet) and orientation (Rads))
** Purpose: Defines outercone size for comparison to radial error
**/
float OuterCone(struct SerData_out *Y)
{ float outercone,z_positive;

 z_positive =Y->zLTP_ft;

 if (z_positive > 18000) {
 outercone = OutBaseRad + 900;
 }
 else if (z_positive > 16000) {
 outercone = OutBaseRad + 800;
 }
 else if (z_positive > 14000) {
 outercone = OutBaseRad + 700;
 }
 else if (z_positive > 12000) {
 outercone = OutBaseRad + 600;
 }
 else if (z_positive > 10000) {
 outercone = OutBaseRad + 500;
 }
 else if (z_positive > 8000) {
 outercone = OutBaseRad + 400;
 }
 else if (z_positive > 6000) {
 outercone = OutBaseRad + 300;
 }
 else if (z_positive > 4000) {
 outercone = OutBaseRad + 200;
 }
 else if (z_positive > 2000) {
 outercone = OutBaseRad + 100;
 }
 else {
 outercone = OutBaseRad;
 }
 return outercone;
}/* end of OuterCone*/

165

APPENDIX E DRAPER TO AGAS INTERFACE CONTROL
DOCUMENT (ICD)REVISION 3A, 22 JUNE 2001

Rob Berlind(YPG (520) 328-6459) – T. Fill (CSDL 617-258-2435)
 This document defines the digital interface between the Draper Precision Air delivery Planning
System (PAPS) and the Affordable Guided Air delivery System (AGAS), which are both part of the
Natick-sponsored New World Vistas program. This message will be sent to all “message-receive
enabled” payloads approximately 10 minutes out from live drop, via a Freewave wireless modem at
902-928 MHz spread-spectrum.

Parameter Description Format Units Notes

System
ID

Identifies the AGAS load that
will receive the message.

Unsigned
Char na Reserved for future use.

Message
Length

Total length, in bytes, of the
message. The length will not
include the checksum bytes.

Unsigned
Long na Required for AGAS error handling.

Time UTC time when current wind
estimate was computed.

Unsigned
Long sec Reserved for future use.

Table
Length

Number of entries in the tables
containing the trajectory and
the wind estimate.

Integer na Required for AGAS error handling.

Trajectory

Defines the expected
uncontrolled path of the load in
a DZ local level coordinate
system. The coordinate system
will be a right hand system with
positive East, North and Up.
The origin will be the desired
impact point.

Integer meter
s

The trajectory will be a table of the
expected East and North and Up
position of the load with respect to the
desired impact point. This table will
have an entry for each 30 meters of
altitude above the desired impact
point.

System
Velocity

Defines the expected
uncontrolled system velocity in
a DZ local level coordinate
system. The coordinate system
will be a right hand system with
positive East, North and Up.

Integer m/s Reserved for future use.

Wind
Estimate

Defines the predicted wind
velocity in a local level
coordinate system. The
coordinate system will be a
right hand system with positive
East, North and Up. The origin
will be the desired impact point.

Integer m/s

The wind estimate is a table of the
predicted East, North and Up
components of the wind velocity with
respect to the altitude of the load
above the desired impact point. This
table will have an entry for each 30
meters of altitude above the desired
impact point. A wind component is
positive if the air mass is moving in the
direction of a positive axis.

DZ latitude
Coordinate

The WGS84 latitude of the
desired impact point. float rad [changed from Revision 2, which

was ECEF]
DZ longitude
Coordinate

The WGS84 longitude of the
desired impact point. float rad [changed from Revision 2, which

was ECEF]
DZ HAE

Coordinate
The WGS84 height above
ellipsoid coordinate of the

Long
Integer

meter
s

The HAE, along with DZ latitude and
longitude coordinates define the origin

166

desired impact point. of the trajectory and wind estimate
(Note that HAE is ≈34m lower than
MSL at La Posa DZ).
[changed from Revision 2, which
was ECEF]

Actuation
(Dis-reef)
Altitude

The Altitude at which the
parachute reefing mechanism
will be removed if a reefed
parachute is used.

Integer meter
s

Same as Draper parameter 'Actuation
Altitude'

CEP
Expected payload delivery
circular error probably derived
using the Monte Carlo tool.

Unsigned
Char na Zero indicates monte carlo tool not

used.

Checksum The Twos Complement of the
Sum of all the bytes.

Unsigned
Integer na

The checksum is the 16-bit sum of all
the unsigned 8-bit bytes. Any overflow
or carry is discarded.

167

LIST OF REFERENCES

1. Chairman Joint Chiefs of Staff, Joint Vision 2010, pp 24-25, 5126 Joint Staff,
Pentagon, Washington D.C.

2. “Summary Report: New World Vistas, Air and Space Power for the 21st
Century,” United States Air Force Science Advisory Board, 1977.

3. Kelly, Katherine and Peña, Brooksie, “Wind Study and GPS Dropsonde
Applicability to Airdrop Testing,” AIAA 2001-2022, paper presented at AIAA
Aerodynamics Decelerator Systems Technology Conference, Boston MA, 22 May 2001.

4. Dellicker, S., Low Cost Parachute Guidance, Navigation, and Control, Master’s
Thesis, Naval Postgraduate School, Monterey, CA, 1999.

5. Williams, T., Optimal Parachute Guidance, Navigation, and Control for the
Affordable Guided Airdrop System (AGAS), MS Thesis, Naval Postgraduate School, June
2000.

6. Boltjanskiy, V., Gamkrelidze, R., Mishenko, E., and Pontryagin, L.,
“Mathematical Theory of Optimal Processes,” Nayka, Moscow, 1969.

7. Komlosy, J., Applications of Rapid Prototyping to the Design and Testing of UAV
Flight Control Systems, Masters Thesis, Naval Postgraduaye School, Monterey, CA,
March, 1998.

8. Hallberg, E., Kaminer, I., and Pascoal, A., “Development of a Flight Test System
for Unmanned Air Vehicles,” IEEE Control Systems, v. 19, pp. 55-65, February 1999.

9. Integrated Systems, Incorporated, RealSim User’s Guide, Sunnyvale, California,
February 1999.

168

THIS PAGE INTENTIONALLY LEFT BLANK

169

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA 93943-5101

3. Maximilian F. Platzer, Distinguished Professor,
Dept. of Aeronautics and Astronautics
Monterey, CA 93943

 platzer@aa.nps.navy.mil

4. Professor Biblarz, Professor, Dept. of Aeronautics and Astronautics
Monterey, CA 93943

 obiblarz@aa.nps.navy.mil

5. Isaac I. Kaminer, Associate Professor, Dept. of Aeronautics and Astronautics
Monterey, CA 93943

 kaminer@aa.nps.navy.mil

6. Richard M. Howard, Associate Professor, Dept. of Aeronautics and Astronautics
Monterey, CA 93943

 rmhoward@aa.nps.navy.mil

7. Oleg A. Yakimenko, Visiting Professor, Dept. of Aeronautics and Astronautics
Monterey, CA 93943

 oayakime@aa.nps.navy.mil

8. U.S. Army Soldier & Biological Chemical Command
 Soldier Systems Center Natick

ATTN: SSCNC-UTS (Richard Benney)
Natick, MA 01760-5017

 Ricard.Benney@natick.army.mil

170

9. US Army Yuma Proving Ground, Aviation and Airdrop Systems Division

ATTN: STEYP-MT-EA (Scott Dellicker)
Yuma, AZ 85365

 Scott.Dellicker@yuma-exch1.army.mil

10. Draper Laboratory
ATTN: Thomas Fill
Cambridge, MA 02139-3563

 tfill@draper.com

11. Vertigo Incorporated
ATTN: Roy Haggard
Lake Elsinor, CA

 rhaggard@vertigo-inc.com

12. Cibola Information Systems
ATTN: Jim Bybee
Yuma, AZ

 James.Bybee@yuma-exch1.army.mil

